Geostatistics Explained

An Introductory Guide for Earth Scientists

This reader-friendly introduction to geostatistics provides a lifeline for students and researchers across the Earth and environmental sciences who until now have struggled with statistics. Using simple and clear explanations for both introductory and advanced material, it demystifies complex concepts and makes formulas and statistical tests easy to understand and apply.

The book begins with a discussion and critical evaluation of experimental and sampling design before moving on to explain essential concepts of probability, statistical significance and Type 1 and Type 2 error. Tests for one and two samples are presented, followed by an accessible graphical explanation of analysis of variance (ANOVA). More advanced ANOVA designs, correlation and regression, and non-parametric tests including chi-square, are then considered. Finally, it introduces the essentials of multivariate techniques such as principal components analysis, multidimensional scaling and cluster analysis, analysis of sequences (especially autocorrelation and simple regression models) and concepts of spatial analysis, including the semivariogram and its application in Kriging.

Illustrated with wide-ranging and interesting examples from topics across the Earth and environmental sciences, *Geostatistics Explained* provides a solid grounding in the basic methods, as well as serving as a bridge to more specialized and advanced analytical techniques. It can be used for an undergraduate course or for self-study and reference. Worked examples at the end of each chapter help reinforce a clear understanding of the statistical tests and their applications.

Steve McKillup is an Associate Professor in the Department of Biosystems and Resources at Central Queensland University. He has received several tertiary teaching awards, including the Vice-Chancellor's Award for Quality Teaching and a 2008 Australian Learning and Teaching Council citation "For developing a highly successful method of teaching complex physiological and statistical concepts, and embodying that method in an innovative international textbook." He is the author of *Statistics Explained: An Introductory Guide for Life Scientists* (Cambridge, 2006).

His research interests include biological control of introduced species, the ecology of soft-sediment shores and mangrove swamps.

Melinda Darby Dyar is an Associate Professor of Geology and Astronomy at Mount Holyoke College, Massachusetts. Her research interests range from innovative pedagogies and curricular materials to the characterization of planetary materials. She has studied samples from mid-ocean ridges and every continent on Earth, as well as from the lunar highlands and Mars. She is a Fellow of the Mineralogical Society of America, and the author or coauthor of more than 130 refereed journal articles. She is the author of two mineralogy DVDs used in college-level teaching, and a textbook, *Mineralogy and Optical Mineralogy* (2008).

Geostatistics Explained

An Introductory Guide for Earth Scientists

STEVE McKILLUP

Central Queensland University

MELINDA DARBY DYAR

Mount Holyoke College, Massachusetts

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United Kingdom by Cambridge University Press, UK

www.cambridge.org Information on this title: www.cambridge.org/9780521763226

© Steve McKillup and Melinda Darby Dyar 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data McKillup, Steve. Geostatistics explained : an introductory guide for earth scientists / Stephen McKillup, Melinda Darby Dyar. p. cm. ISBN 978-0-521-76322-6 (hardback) 1. Geology – Statistical methods. I. Dyar, M. Darby (Melinda Darby) II. Title. QE33.2.S82M36 2010 550.1'5195-dc22

2010002838

ISBN 978-0-521-76322-6 Hardback ISBN 978-0-521-74656-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface	page xv
1	Introduction	1
1.1	Why do earth scientists need to understand experimental	
	design and statistics?	1
1.2	What is this book designed to do?	6
2	"Doing science": hypotheses, experiments and disproof	8
2.1	Introduction	8
2.2	Basic scientific method	8
2.3	Making a decision about a hypothesis	11
2.4	Why can't a hypothesis or theory ever be proven?	11
2.5	"Negative" outcomes	12
2.6	Null and alternate hypotheses	12
2.7	Conclusion	13
2.8	Questions	14
3	Collecting and displaying data	15
3.1	Introduction	15
3.2	Variables, sampling units and types of data	15
3.3	Displaying data	17
3.4	Displaying ordinal or nominal scale data	21
3.5	Bivariate data	21
3.6	Data expressed as proportions of a total	25
3.7	Display of geographic direction or orientation	26
3.8	Multivariate data	26
3.9	Conclusion	27

Cambridge University Press
978-0-521-74656-4 - Geostatistics Explained: An Introductory Guide for Earth Scientists
Steve McKillup and Melinda Darby Dyar
Frontmatter
More information

vi	i Contents	
4	Introductory concepts of experimental design	28
4.1	Introduction	28
4.2	Sampling: mensurative experiments	29
4.3	Manipulative experiments	34
4.4	Sometimes you can only do an unreplicated experiment	40
4.5	Realism	41
4.6	A bit of common sense	42
4.7	Designing a "good" experiment	43
4.8	Conclusion	44
4.9	Questions	44
5	Doing science responsibly and ethically	45
5.1	Introduction	45
5.2	Dealing fairly with other people's work	45
5.3	Doing the sampling or the experiment	47
5.4	Evaluating and reporting results	48
5.5	Quality control in science	50
5.6	Questions	50
6	Probability helps you make a decision about	
	your results	51
6.1	Introduction	51
6.2	Statistical tests and significance levels	52
6.3	What has this got to do with making a decision or	
	statistical testing?	57
6.4	Making the wrong decision	57
6.5	Other probability levels	58
6.6	How are probability values reported?	60
6.7	All statistical tests do the same basic thing	60
6.8	A very simple example: the chi-square test for goodness of fit	60
6.9	What if you get a statistic with a probability of exactly 0.05?	64
6.10	Conclusion	65
6.11	Questions	65
7	Working from samples: data, populations and statistics	66
7.1	Using a sample to infer the characteristics of a population	66
7.2	Statistical tests	66

Cambridge University Press

978-0-521-74656-4 - Geostatistics Explained: An Introductory Guide for Earth Scientists Steve McKillup and Melinda Darby Dyar Frontmatter More information

Contents vii The normal distribution 7.3 66 7.4 Samples and populations 71 7.5 Your sample mean may not be an accurate estimate of the population mean 73 What do you do when you only have data from one 7.6 sample? 75 7.7 Why are the statistics that describe the normal distribution so important? 78 Distributions that are not normal 7.8 80 7.9 Other distributions 80 Other statistics that describe a distribution 7.10 82 7.11 Conclusion 83 7.12 Ouestions 84 Normal distributions: tests for comparing the means 8 of one and two samples 85 8.1 Introduction 85 8.2 The 95% confidence interval and 95% confidence limits 85 Using the Z statistic to compare a sample mean and 8.3 population mean when population statistics are known 86 Comparing a sample mean to an expected value when 8.4 population statistics are not known 87 Comparing the means of two related samples 8.5 96 Comparing the means of two independent samples 8.6 98 8.7 Are your data appropriate for a *t* test? 100 Distinguishing between data that should be analyzed by 8.8 a paired-sample test and a test for two independent samples 102 Conclusion 8.9 103 8.10 Questions 103 9 Type 1 and Type 2 error, power and sample size 105 Introduction 9.1 105 Type 1 error 9.2 105 Type 2 error 9.3 106 The power of a test 9.4 109

Cambridge University Press	
978-0-521-74656-4 - Geostatistics Explained: An Introductory Guide for Earth Scientist	ts
Steve McKillup and Melinda Darby Dyar	
Frontmatter	
More information	

viii	Contents	
9.5	What sample size do you need to ensure the risk of Type 2	
9.5	error is not too high?	111
9.6	Type 1 error, Type 2 error and the concept of risk	113
9.7	Conclusion	113
9.8	Questions	114
10	Single-factor analysis of variance	115
10.1	Introduction	115
10.2	Single-factor analysis of variance	116
10.3	An arithmetic/pictorial example	122
10.4	Unequal sample sizes (unbalanced designs)	128
10.5	An ANOVA does not tell you which particular treatments	
	appear to be from different populations	128
10.6	Fixed or random effects	128
10.7	Questions	129
		101
11	Multiple comparisons after ANOVA	131
11.1	Introduction	131
11.2	Multiple comparison tests after a Model I ANOVA	131
11.3	An a posteriori Tukey comparison following a significant	124
114	result for a single-factor Model I ANOVA	134
11.4	Other a posteriori multiple comparison tests	138
11.5	Planned comparisons	138
11.6	Questions	140
12	Two-factor analysis of variance	142
12.1	Introduction	142
12.2	What does a two-factor ANOVA do?	145
12.3	How does a two-factor ANOVA analyze these data?	146
12.4	How does a two-factor ANOVA separate out the effects of	
	each factor and interaction?	150
12.5	An example of a two-factor analysis of variance	153
12.6	Some essential cautions and important complications	154
12.7	Unbalanced designs	164
12.8	More complex designs	164
12.9	Questions	165

	Contents	ix
13	Important assumptions of analysis of variance,	
	transformations and a test for equality of	
	variances	166
13.1	Introduction	166
13.2	Homogeneity of variances	166
13.3	Normally distributed data	167
13.4	Independence	171
13.5	Transformations	171
13.6	Are transformations legitimate?	172
13.7	Tests for heteroscedasticity	174
13.8	Questions	176
14	Two-factor analysis of variance without replication,	
	and nested analysis of variance	178
14.1	Introduction	178
14.2	Two-factor ANOVA without replication	178
14.3	A posteriori comparison of means after a two-factor	
	ANOVA without replication	183
14.4	Randomized blocks	184
14.5	Nested ANOVA as a special case of a single-factor	
	ANOVA	185
14.6	A pictorial explanation of a nested ANOVA	187
14.7	A final comment on ANOVA: this book is only an	
	introduction	192
14.8	Questions	192
15	Relationships between variables: linear correlation and	
	linear regression	194
15.1	Introduction	194
15.2	Correlation contrasted with regression	195
15.3	Linear correlation	195
15.4	Calculation of the Pearson r statistic	196
15.5	Is the value of <i>r</i> statistically significant?	202
15.6	Assumptions of linear correlation	202
15.7	Conclusion	202
15.8	Questions	203

Cambridge University Press	
978-0-521-74656-4 - Geostatistics Explained: An Introductory Guide for Earth Scientists	;
Steve McKillup and Melinda Darby Dyar	
Frontmatter	
More information	

x Contents

16	Linear regression	204
16.1	Introduction	204
16.2	Linear regression	204
16.3	Calculation of the slope of the regression line	205
16.4	Calculation of the intercept with the <i>Y</i> axis	208
16.5	Testing the significance of the slope and the intercept	
	of the regression line	211
16.6	An example: school cancellations and snow	217
16.7	Predicting a value of <i>Y</i> from a value of <i>X</i>	219
16.8	Predicting a value of <i>X</i> from a value of <i>Y</i>	219
16.9	The danger of extrapolating beyond the range of data	
	available	220
16.10	Assumptions of linear regression analysis	220
16.11	Multiple linear regression	223
16.12	Further topics in regression	224
16.13	Questions	225
17	Non-parametric statistics	227
17.1	Introduction	227
17.2	The danger of assuming normality when a population	
	is grossly non-normal	227
17.3	The value of making a preliminary inspection of the data	229
18	Non-parametric tests for nominal scale data	230
18.1	Introduction	230
18.2	Comparing observed and expected frequencies: the	
	chi-square test for goodness of fit	231
18.3	Comparing proportions among two or more independent	
	samples	234
18.4	Bias when there is one degree of freedom	237
18.5	Three-dimensional contingency tables	242
18.6	Inappropriate use of tests for goodness of fit and	
	heterogeneity	242
18.7	Recommended tests for categorical data	243
18.8	Comparing proportions among two or more related	
	samples of nominal scale data	243
18.9	Questions	245

	Contents	х
19	Non-parametric tests for ratio, interval or ordinal scale	
	data	247
19.1	Introduction	247
19.2	A non-parametric comparison between one sample and	
	an expected distribution	248
19.3	Non-parametric comparisons between two independent	
	samples	250
19.4	Non-parametric comparisons among more than two	
	independent samples	25
19.5	Non-parametric comparisons of two related samples	25
19.6	Non-parametric comparisons among three or more	
	related samples	26
19.7	Analyzing ratio, interval or ordinal data that show gross	
	differences in variance among treatments and cannot be	
	satisfactorily transformed	26
19.8	Non-parametric correlation analysis	26
19.9	Other non-parametric tests	26
19.10	Questions	26
20	Introductory concepts of multivariate analysis	270
20.1	Introduction	27
20.2	Simplifying and summarizing multivariate data	27
20.3	An <i>R</i> -mode analysis: principal components analysis	27
20.4	How does a PCA combine two or more variables into one?	27
20.5	What happens if the variables are not highly correlated?	27
20.6	PCA for more than two variables	27
20.7	The contribution of each variable to the principal	
	components	27
20.8	An example of the practical use of principal components	
	analysis	282
20.9	How many principal components should you plot?	282
20.10	How much variation must a PCA explain before it is	
	useful?	28
20.11	Summary and some cautions and restrictions on use of PCA	28
	Q-mode analyses: multidimensional scaling	284
20.12		
20.12 20.13	How is a univariate measure of dissimilarity among	

Cambridge University Press
978-0-521-74656-4 - Geostatistics Explained: An Introductory Guide for Earth
Steve McKillup and Melinda Darby Dyar
Frontmatter
More information

xii	Contents	
20.14	An example	287
20.15	Stress	289
20.16	Summary and cautions on the use of multidimensional	
	scaling	290
20.17	Q-mode analyses: cluster analysis	291
20.18	Which multivariate analysis should you use?	295
20.19	Questions	295
21	Introductory concepts of sequence analysis	297
21.1	Introduction	297
21.2	Sequences of ratio, interval or ordinal scale data	298
21.3	Preliminary inspection by graphing	298
21.4	Detection of within-sequence similarity and dissimilarity	299
21.5	Cross-correlation	307
21.6	Regression analysis	308
21.7	Simple linear regression	309
21.8	More complex regression	311
21.9	Simple autoregression	317
21.10	More complex series with a cyclic component	320
21.11	Statistical packages and time series analysis	322
21.12	Some very important limitations and cautions	322
21.13	Sequences of nominal scale data	323
21.14	Records of the repeated occurrence of an event	327
21.15	Conclusion	331
21.16	Questions	332
22	Introductory concepts of spatial analysis	334
22.1	Introduction	334
22.2	Testing whether a spatial distribution occurs at random	335
22.3	Data for the direction of objects	346
22.4	Prediction and interpolation in two dimensions	352
22.5	Conclusion	362
22.6	Questions	362
23	Choosing a test	364
23.1	Introduction	364

Scientists

	Contents	xiii
Appendices		
Appendix A	Critical values of chi-square, t and F	374
Appendix B	Answers to questions	380
References		389
Index		391

Preface

This book presents an introduction to statistical methods that is specifically written for "earth science" students who do not have a strong background in mathematics.

The earth sciences are increasingly (and appropriately) recognized as environmental sciences that overlap and integrate with other disciplines, especially geography, hydrology, soil science, oceanography, environmental management, environmental impact assessment, bioremediation, remote sensing and conservation. As a result, the skills required of earth scientists have become far more diverse, as have the interests and backgrounds of students who enroll in these programs. Today's earth scientists need to be able to critically evaluate sampling designs, to understand the concept of statistical analysis, and be able to evaluate and interpret the results of statistical tests applied in a wide range of fields.

A sound grounding in statistical concepts and methods is especially important, but an increasing proportion of earth science students do not have this. Some have told us that math avoidance is the reason why they have pursued earth sciences instead of chemistry, biology and physics. Many such students are afraid of mathematics (often because they did badly in such subjects at high school) and dread doing an introductory statistics course.

This book has been developed for university and college courses in introductory geostatistics and as a guide for new users to learn statistics on their own. We assume very little prior knowledge of mathematics and start from first principles to develop an understanding of significance testing that can be applied to all statistical tests and related to experimental design. We use a carefully structured conceptual approach to introduce and explain what statistical tests actually do, using a minimum of terminology. Concepts that other introductory texts present as a daunting series of

xvi **Preface**

formulae are explained in a way that even the "math-phobic" student will find refreshing. The examples we have given are deliberately simple to help the reader understand the statistical concepts being explained. In cases where we have not given a reference for an example, the data have been deliberately contrived (or simplified from actual data) for clarity. Perhaps most importantly, this text develops a strong conceptual understanding that can be applied to the range of statistical methods used in the geosciences.

If you only take an introductory course, then this book will provide the background and understanding you need to interpret and critically evaluate results and summary reports produced by statisticians. If you go on further in geostatistics, this introduction will serve as a bridge to more advanced courses that use texts such as Borradaile (2003) *Statistics of Earth Science Data*, and Davis (1986, 2002) *Statistics and Data Analysis in Geology*.

We have many people to thank. Erick Bestland introduced us by email. Comments by reviewers improved the text. We thank our editors, Susan Francis and Jon Billam, for their considerable help and their good humor. Both our families provided enormous support and tolerated a great deal of absent-mindedness.

For Steve, Ruth McKillup provided constant encouragement and read, commented on, and reread several drafts. Lynn Stewart's constructive help was particularly appreciated, as were Haylee Weaver's insightful comments.

For Darby, thanks are due to Harold Andrews, who introduced her to statistics as an undergraduate in a course that has proven useful in many ways over the years. Tekla Harms humored many thoughtful geologic discussions at 6 a.m. Peter, Duncan and Lindy Crowley provided necessary distractions from this project and a constant reminder of what is really important. At her feet, dogs waited patiently for walks that were postponed by "one last change" to various chapters; they are glad to know that they will now have their day!