DEVELOPMENT OF PROFESSIONAL EXPERTISE

Professionals such as medical doctors, airplane pilots, lawyers, and technical specialists find that some of their peers have reached high levels of achievement that are difficult to measure objectively. In order to understand to what extent it is possible to learn from these expert performers for the purpose of helping others improve their performance, we first need to reproduce and measure this performance. This book is designed to provide the first comprehensive overview of research on the acquisition and training of professional performance as measured by objective methods rather than by subjective ratings by supervisors. In this collection of articles, the world's foremost experts discuss methods for assessing the expert's knowledge and review how we measure professional performance and design-training environments that permit beginning and experienced professionals to develop and maintain their high levels of performance, using examples from a wide range of professional domains.

K. Anders Ericsson, PhD, is presently Conradi Eminent Scholar and Professor of Psychology at Florida State University. For the last 30 years he has studied the development of expert performance in domains such as music, chess, medicine, business, and sports and how expert performers attain their superior performance by acquiring complex cognitive mechanisms and physiological adaptations through extended deliberate practice. He has edited several books on expertise, including Toward a General Theory of Expertise (1991), The Road to Excellence: The Acquisition of Expert Performance in the Arts and Sciences, Sports, and Games (1996), and the influential Cambridge Handbook of Expertise and Expert Performance (2006). His research has been recently featured in The New York Times, Scientific American, Fortune magazine, New Scientist, and Time magazine. He is a Fellow of the American Psychological Association, the Association of Psychological Science, and the Center for Advanced Study in the Behavioral Sciences.
Development of Professional Expertise

TOWARD MEASUREMENT OF EXPERT PERFORMANCE AND DESIGN OF OPTIMAL LEARNING ENVIRONMENTS

Edited by

K. Anders Ericsson

Florida State University
CONTENTS

List of Figures page viii
List of Tables xi
List of Contributors xiii

1 The Measurement and Development of Professional Performance: An Introduction to the Topic and a Background to the Design and Origin of This Book 1

SECTION 1: CHALLENGES IN PAST AND CONTEMPORARY EFFORTS TO MEASURE AND TRAIN THE OBJECTIVE PERFORMANCE OF PROFESSIONALS

2 The 20th-Century Revolution in Military Training 27
Ralph E. Chatham

3 Developing Professional Expertise with a Cognitive Apprenticeship Model: Examples from Avionics and Medicine 61
Susanne P. Lajoie

4 Leadership Development and Assessment: Describing and Rethinking the State of the Art 84
Michael D. Mumford, Tamara L. Friedrich, Jay J. Caughron, and Alison L. Antes

5 Revolutions, Leaders, and Diagnosticians: Reflections on the Themes in Chapters 2–4 108
Earl B. Hunt
Contents

SECTION 2: PAST AND CONTEMPORARY EFFORTS TO DESIGN INSTRUCTION, TRAIN, AND MAINTAIN PROFESSIONAL PERFORMANCE

6 Research on Past and Current Training in Professional Domains: The Emerging Need for a Paradigm Shift 131
 Jeroen J. G. van Merriënboer and Eddy W. Boot

7 Designing Training for Professionals Based on Subject Matter Experts and Cognitive Task Analysis 157
 Jan Maarten Schraagen

8 How to Help Professionals Maintain and Improve Their Knowledge and Skills: Triangulating Best Practices in Medicine 180
 Dave A. Davis

9 Advances in Specifying What Is to Be Learned: Reflections on the Themes in Chapters 6–8 203
 Richard E. Mayer

SECTION 3: THE ASSESSMENT AND TRAINING OF SKILLED AND EXPERT PERFORMERS IN THE MILITARY

10 Toward a Second Training Revolution: Promise and Pitfalls of Digital Experiential Learning 215
 Ralph E. Chatham

11 Evaluating Pilot Performance 247
 Brian T. Schreiber, Winston Bennett, Jr., Charles M. Colegrove, Antoinette M. Portrey, David A. Greschke, and Herbert H. Bell

12 Contrasting Submarine Specialty Training: Sonar and Fire Control 271
 Susan S. Kirschenbaum, Shelley L. McInnis, and Kevin P. Correll

13 Training Complex Cognitive Skills: A Theme-Based Approach to the Development of Battlefield Skills 286
 Scott B. Shadrick and James W. Lussier

14 Structuring the Conditions of Training to Achieve Elite Performance: Reflections on Elite Training Programs and Related Themes in Chapters 10–13 312
 Robert A. Bjork
Contents

Section 4: The Development of Expertise and Expert Performance

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>The Influence of Learning Research on the Design and Use of Assessment</td>
<td>Eva L. Baker</td>
<td>333</td>
</tr>
<tr>
<td>16</td>
<td>Acquiring Conceptual Expertise from Modeling: The Case of Elementary Physics</td>
<td>Kurt VanLehn and Brett van de Sande</td>
<td>356</td>
</tr>
<tr>
<td>17</td>
<td>Teaching for Expertise: Problem-Based Methods in Medicine and Other Professional Domains</td>
<td>Henny P. A. Boshuizen</td>
<td>379</td>
</tr>
<tr>
<td>18</td>
<td>Enhancing the Development of Professional Performance: Implications from the Study of Deliberate Practice</td>
<td>K. Anders Ericsson</td>
<td>405</td>
</tr>
<tr>
<td>20</td>
<td>The Value of Expertise and Expert Performance: A Review of Evidence from the Military</td>
<td>J. D. Fletcher</td>
<td>449</td>
</tr>
</tbody>
</table>

Name Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>495</td>
</tr>
</tbody>
</table>

Subject Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
</tr>
</tbody>
</table>
FIGURES

2.1 A notional learning curve page 36
2.2 Training at the knee of the curve 38
2.3 Skills atrophy 40
2.4 Two levels of a training curve family 44
2.5 A hierarchy of learning curves 45
2.6 Pilot survivability in air-to-air combat 48
2.7 The influence upon combat proficiency of training by
“simulated engagements” 50
2.8 Readiness of the Navy in relation to its anticipated
deployments ... 56
3.1 The Sherlock interface 68
3.2 The BioWorld interface 76
4.1 Model of leader cognition 91
5.1 The power law relation between memory strength
and occasions of learning (both in arbitrary units) 114
5.2 The power law relation between memory strength
and the number of time periods between cessation of
training and testing 115
5.3 The ratio of memory strengths during the
retention period .. 116
8.1 Triangulating the competence of professionals 192
8.2 A 2 × 2 table outlining effect of CME
interventions to current and proposed scenarios
in CME delivery .. 196
10.1 Three parts of the Tactical Language Trainers 223
10.2 Student learning basic Iraqi language and culture ... 223
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Soldiers at Fort Lewis training with DARWARS Ambush!</td>
<td>227</td>
</tr>
<tr>
<td>10.4</td>
<td>Screenshot from DARWARS Ambush!</td>
<td>227</td>
</tr>
<tr>
<td>10.5</td>
<td>Students learning on the UNIX troubleshooting tutor</td>
<td>235</td>
</tr>
<tr>
<td>10.6</td>
<td>Strategic operations</td>
<td>239</td>
</tr>
<tr>
<td>10.7</td>
<td>Training transfer</td>
<td>240</td>
</tr>
<tr>
<td>11.1</td>
<td>Link Pilot Trainer</td>
<td>248</td>
</tr>
<tr>
<td>11.2</td>
<td>Representation of assets</td>
<td>251</td>
</tr>
<tr>
<td>11.3</td>
<td>F-16 aircraft</td>
<td>256</td>
</tr>
<tr>
<td>11.4</td>
<td>Controls intercept geometry</td>
<td>262</td>
</tr>
<tr>
<td>11.5</td>
<td>Abstraction levels of assessment</td>
<td>263</td>
</tr>
<tr>
<td>12.1</td>
<td>Sonar waterfall display</td>
<td>274</td>
</tr>
<tr>
<td>12.2</td>
<td>The bearing fan</td>
<td>275</td>
</tr>
<tr>
<td>12.3</td>
<td>Representation of the MATE display</td>
<td>276</td>
</tr>
<tr>
<td>12.4</td>
<td>Line-of-sight diagram</td>
<td>277</td>
</tr>
<tr>
<td>12.5</td>
<td>Generic training time line</td>
<td>282</td>
</tr>
<tr>
<td>13.1</td>
<td>Think Like a Commander training overview</td>
<td>297</td>
</tr>
<tr>
<td>13.2</td>
<td>Mean percent of critical information identified</td>
<td>301</td>
</tr>
<tr>
<td>13.3</td>
<td>Information considered by time allowed</td>
<td>301</td>
</tr>
<tr>
<td>13.4</td>
<td>Mean percent of critical information identified for each rank by deployment</td>
<td>303</td>
</tr>
<tr>
<td>13.5</td>
<td>Baseline measures of performance for the mean percent of critical information identified for each group of captains</td>
<td>304</td>
</tr>
<tr>
<td>15.1</td>
<td>Model-based assessment</td>
<td>344</td>
</tr>
<tr>
<td>15.2</td>
<td>Ontology of M-16 marksmanship</td>
<td>346</td>
</tr>
<tr>
<td>15.3</td>
<td>Knowledge map of teachers’ understanding of algebra</td>
<td>346</td>
</tr>
<tr>
<td>15.4</td>
<td>Algebra ontology for teacher and student use</td>
<td>349</td>
</tr>
<tr>
<td>16.1</td>
<td>A quantitative elementary physics problem and its solution</td>
<td>358</td>
</tr>
<tr>
<td>16.2</td>
<td>Two qualitative physics problems</td>
<td>359</td>
</tr>
<tr>
<td>18.1</td>
<td>Three examples of laboratory tasks that capture the consistently superior performance of domain experts in chess, typing, and music</td>
<td>410</td>
</tr>
<tr>
<td>18.2</td>
<td>An illustration of the gradual increases in expert performance as a function of age, in domains such as chess</td>
<td>412</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>18.3</td>
<td>Estimated amount of time for solitary practice as a function of age</td>
<td>414</td>
</tr>
<tr>
<td>18.4</td>
<td>A schematic illustration of the acquisition of expert performance</td>
<td>415</td>
</tr>
<tr>
<td>18.5</td>
<td>Introduction of new pianistic techniques since the early development of the piano</td>
<td>416</td>
</tr>
<tr>
<td>18.6</td>
<td>An illustration of the qualitative difference between the course of improvement of expert performance and of everyday activities</td>
<td>418</td>
</tr>
<tr>
<td>19.1</td>
<td>A student learning the art of Tissu and her teacher</td>
<td>435</td>
</tr>
<tr>
<td>21.1</td>
<td>Comparing cases yields dramatic improvement in learning from case-based instruction</td>
<td>474</td>
</tr>
</tbody>
</table>
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Performance decreases expected as a result of a decrease of 10 percent in flying hours</td>
<td>37</td>
</tr>
<tr>
<td>6.1</td>
<td>Reasons for using a simulated rather than real task environment</td>
<td>148</td>
</tr>
<tr>
<td>6.2</td>
<td>The four components coupled to learning processes and suitable media</td>
<td>151</td>
</tr>
<tr>
<td>9.1</td>
<td>Four approaches to specifying what is to be learned</td>
<td>204</td>
</tr>
<tr>
<td>9.2</td>
<td>Five kinds of knowledge</td>
<td>205</td>
</tr>
<tr>
<td>9.3</td>
<td>Three steps in instructional design</td>
<td>209</td>
</tr>
<tr>
<td>11.1</td>
<td>Examples of A-10 MEC skills</td>
<td>259</td>
</tr>
<tr>
<td>13.1</td>
<td>Themes of battlefield thinking</td>
<td>293</td>
</tr>
<tr>
<td>13.2</td>
<td>Characteristics of deliberate practice</td>
<td>295</td>
</tr>
<tr>
<td>15.1</td>
<td>Basic truths in assessment</td>
<td>334</td>
</tr>
<tr>
<td>15.2</td>
<td>Common limitations found in tests and assessments for training</td>
<td>337</td>
</tr>
<tr>
<td>15.3</td>
<td>Common purposes for assessments and tests</td>
<td>340</td>
</tr>
<tr>
<td>15.4</td>
<td>Models of learning informing testing</td>
<td>344</td>
</tr>
<tr>
<td>15.5</td>
<td>Tasks for improvement of the measurement of complex cognition</td>
<td>352</td>
</tr>
<tr>
<td>17.1</td>
<td>Four PBL problems</td>
<td>386</td>
</tr>
<tr>
<td>17.2</td>
<td>Knowledge restructuring, clinical reasoning, and levels of expertise</td>
<td>394</td>
</tr>
<tr>
<td>17.3</td>
<td>Results of final-year students and graduates from PBL and more traditional schools on knowledge and skills test</td>
<td>398</td>
</tr>
<tr>
<td>20.1</td>
<td>Predictors of operational effectiveness</td>
<td>456</td>
</tr>
<tr>
<td>20.2</td>
<td>Loss ratios in air-to-air engagements: 1965–1973</td>
<td>461</td>
</tr>
</tbody>
</table>
CONTRIBUTORS

ALISON L. ANTES
Department of Psychology
The University of Oklahoma
Norman, OK

EVA L. BAKER
University of California, CRESST
Los Angeles, CA

HERBERT H. BELL
Air Force Research Laboratory
Warfighter Readiness Research Division
Mesa, AZ

WINSTON BENNETT, JR.
Air Force Research Laboratory
Warfighter Readiness Research Division
Mesa, AZ

ROBERT A. BJORK
Department of Psychology
University of California
Los Angeles, CA

EDDY W. BOOT
TNO Defence, Security and Safety
Department of Training & Instruction
Soesterberg, The Netherlands

HENNY P. A. BOSHUIZEN
Open University of the Netherlands
Centre for Learning Sciences and Technology (Celstec)
Heerlen, The Netherlands

JOHN D. BRANSFORD
College of Education
University of Washington
Seattle, WA

JAY J. CAUGHRON
Department of Psychology
The University of Oklahoma
Norman, OK

RALPH E. CHATHAM
Technology and Training Consultant
Falls Church, VA

SUSAN E. F. CHIPMAN
Arlington, VA, and Boulder, CO

CHARLES M. COLEGROVE
Alion Science and Technology
Langley Air Force Base, VA

KEVIN P. CORRELL
Naval Undersea Warfare Center Division
Newport, RI
List of Contributors

DAVE A. DAVIS
Association of American Medical Colleges
Washington, DC

DAVID W. ECCLES
The Learning Systems Institute
Florida State University
Tallahassee, FL

K. ANDERS ERICSSON
Department of Psychology
Florida State University
Tallahassee, FL

J. D. FLETCHER
Institute for Defense Analyses
Alexandria, VA

TAMARA L. FRIEDRICH
Department of Psychology
The University of Oklahoma
Norman, OK

DAVID A. GRESCHEKE
General Dynamics Information Technology
Mesa, AZ

EARL B. HUNT
Department of Psychology
University of Washington
Seattle, WA

SUSAN S. KIRSCHENBAUM
Naval Undersea Warfare Center Division
Newport, RI

SUSANNE P. LAJOIE
Department of Educational and Counselling Psychology
McGill University
Montreal, Quebec, Canada

LAURA LANG
The Learning Systems Institute

JAMES W. LUSSIER
U.S. Army Research Institute
Fort Knox Research Unit
Fort Knox, KY

RICHARD E. MAYER
Department of Psychology
University of California
Santa Barbara, CA

SHELLEY L. MCGINNIS
Naval Undersea Warfare Center Division
Newport, RI

MICHAEL D. MUMFORD
Department of Psychology
The University of Oklahoma
Norman, OK

RAY S. PEREZ
Office of Naval Research
Arlington, VA

ANTOINETTE M. PORTREY
Lockheed Martin
Mesa, AZ

JAN MAARTEN SCHRAAGEN
TNO Human Factors
Department Human in Command
Soesterberg, The Netherlands

BRIAN T. SCHREIBER
Lumir Research Institute
Grayslake, IL

DANIEL L. SCHWARTZ
Stanford University School of Education
Stanford, CA

SCOTT B. SHADRICK
U.S. Army Research Institute
Fort Knox Research Unit
Fort Knox, KY
List of Contributors

BRETT VAN DE SANDE
School of Computer and Informatics
Arizona State University
Tempe, AZ

KURT VANLEHN
School of Computer and Informatics
Arizona State University
Tempe, AZ

JEROEN J. G. VAN MERRIËNBOER
Maastricht University, FHML
Department of Educational Development & Research
Maastricht, The Netherlands

PAUL WARD
Learning Systems Institute
Department of Psychology
Florida State University
Tallahassee, FL