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Abstract

The running time of many iterative numerical algorithms is dominated

by the condition number of the input, a quantity measuring the sensi-

tivity of the solution with regard to small perturbations of the input.

Examples are iterative methods of linear algebra, interior-point meth-

ods of linear and convex optimization, as well as homotopy methods for

solving systems of polynomial equations. Thus a probabilistic analysis

of these algorithms can be reduced to the analysis of the distribution of

the condition number for a random input. This approach was elaborated

upon for average-case complexity by many researchers.

The goal of this survey is to explain how average-case analysis can be

naturally refined in the sense of smoothed analysis. The latter concept,

introduced by Spielman and Teng in 2001, aims at showing that for all

real inputs (even ill-posed ones), and all slight random perturbations

of that input, it is unlikely that the running time will be large. A re-

cent general result of Bürgisser, Cucker and Lotz (2008) gives smoothed

analysis estimates for a variety of applications. Its proof boils down to

local bounds on the volume of tubes around a real algebraic hypersurface

in a sphere. This is achieved by bounding the integrals of absolute cur-

vature of smooth hypersurfaces in terms of their degree via the principal

kinematic formula of integral geometry and Bézout’s theorem.

1.1 Introduction

In computer science, the most common theoretical approach to under-

standing the behaviour of algorithms is worst-case analysis. This means

proving a bound on the worst possible performance an algorithm can
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have. In many situations this gives satisfactory answers. However, there

are cases of algorithms that perform exceedingly well in practice and

still have a provably bad worst-case behaviour. A famous example is

Dantzig’s simplex algorithm. In an attempt to rectify this discrepancy,

researchers have introduced the concept of average-case analysis, which

means bounding the expected performance of an algorithm on random

inputs. For the simplex algorithm, average-case analyses have been first

given by Borgwardt (1982) and Smale (1983). However, while a proof of

good average performance yields an indication of a good performance in

practice, it can rarely explain it convincingly. The problem is that the

results of an average-case analysis strongly depend on the distribution

of the inputs, which is unknown, and usually assumed to be Gaussian

for rendering the mathematical analysis feasible.

Spielman and Teng suggested in 2001 the concept of smoothed analysis

of algorithms, which is a new form of analysis of algorithms that arguably

blends the best of both worst-case and average-case. They used this new

framework to give a more compelling explanation of the simplex method

(for the shadow vertex pivot rule). For this work they were recently

awarded the 2008 Gödel prize. See Spielman and Teng (2004) for the

full paper.

The general idea of smoothed analysis is easy to explain. Let T : R
p →

R+ ∪ {∞} be any function (measuring running time etc). Instead of

showing “it is unlikely that T (a) will be large,” one shows that “for

all a and all slight random perturbations a + δa, it is unlikely that

T (a+δa) will be large.” If we assume that the perturbation δa is centered

(multivariate) standard normal with variance σ2 , in short δa ∈ N(0, σ2),

then the goal of a smoothed analysis of T is to give good estimates of

sup
a∈Rp

Probδa∈N (0,σ 2 ){T (a + δa) ≥ ǫ−1}.

In a first approach, one may focus on expectations, that is on bounding

sup
a∈Rp

E δa∈N (0,σ 2 )T (a + δa).

Figure 1.1 succinctly summarizes the three types of analysis of algo-

rithms.

Smoothed analysis is not only useful for analyzing the simplex algo-

rithm, but can be applied to a wide variety of numerical algorithms. For

doing so, understanding the concept of condition numbers is an impor-

tant intermediate step.

A distinctive feature of the computations considered in numerical anal-
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Worst-case analysis Average-case analysis Smoothed analysis

sup
a∈Rp

T (a) E a∈DT (a) sup
a∈Rp

E a∈N (a ,σ 2 )T (a)

Fig. 1.1. Three types of analysis of algorithms. D denotes a probability dis-
tribution on R

p .

ysis is that they are affected by errors. A main character in the under-

standing of the effects of these errors is the condition number of the

input. This is a positive number which, roughly speaking, quantifies the

errors when computations are performed with infinite precision but the

input has been modified by a small perturbation. The condition number

depends only on the data and the problem at hand. The best known

condition number is that for matrix inversion and linear equation solv-

ing. For a square matrix A it takes the form κ(A) = ‖A‖‖A−1‖ and was

independently introduced by Goldstine and von Neumann (1947) and

Turing (1948).

Condition numbers are omnipresent in round-off analysis. They also

appear as a parameter in complexity bounds for a variety of efficient

iterative algorithms in linear algebra, linear and convex optimization, as

well as homotopy methods for solving systems of polynomial equations.

The running time T (x, ǫ) of these algorithms, measured as the number

of arithmetic operations, can often be bounded in the form

T (x, ǫ) ≤
(

size(x) + μ(x) + log ǫ−1
)c

, (1.1)

with some universal constant c > 0. Here the input is a vector x ∈
R

n of real numbers, size(x) = n is the dimension of x, the positive

parameter ǫ measures the required accuracy, and μ(x) is some measure

of conditioning of x. (Depending on the situation, μ(x) may be either a

condition number or its logarithm. Moreover, log ǫ−1 might be replaced

by log log ǫ−1 .)

We discuss the issue of condition-based analysis of algorithms in Sec-

tions 1.2–1.4, by elaborating a bit on the case of convex optimization

and putting special focus on generalizations of Renegar’s (1995a, 1995b)

condition number for linear programming. We also discuss Shub and

Smale’s (1993a) condition number for polynomial equation solving.

Let us mention that L. Blum (1990) suggested to extend the com-

plexity theory of real computation due to Blum, Shub, Smale (1989) by
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measuring the performance of algorithms in terms of the size and the

condition of inputs. However, up to now, no complexity theory over

the reals has been developed that incorporates the concepts of approx-

imation and conditioning and allows to speak about lower bounds or

completeness results in that context.

Smale (1997) proposed a two-part scheme for dealing with complexity

upper bounds in numerical analysis. The first part consists of establishing

bounds of the form (1.1). The second part of the scheme is to analyze the

distribution of μ(x) under the assumption that the inputs x are random

with respect to some probability distribution. More specifically, we aim

at tail estimates of the form

Prob
{

μ(x) ≥ ǫ−1
}

≤ size(x)c ǫα (ǫ > 0)

with universal constants c, α > 0. In a first attempt, one may try to

show upper bounds on the expectation of μ(x) (or log μ(x), depending

on the situation). Combining the two parts of the scheme, we arrive

at upper bounds for the average running time of our specific numerical

algorithms considered. So if we content ourselves with statements about

the probabilistic average-case, we can eliminate the dependence on μ(x)

in (1.1). This approach was elaborated upon for average-case complex-

ity by Blum and Shub (1986), Renegar (1987), Demmel (1988), Kostlan

(1988), Edelman (1988, 1992), Shub and Smale (1993b, 1994, 1996),

Cheung and Cucker (2002), Cucker and Wschebor (2003), Cheung et

al. (2005), Beltrán and Pardo (2007), and others. We only briefly dis-

cuss a few of these results in Section 1.5. Instead, we put emphasis on the

analysis of the GCC-condition number C(A) of linear programming intro-

duced by Goffin (1980) and Cheung and Cucker (2001), see (1.11). This

is a variation of the condition number introduced by Renegar (1995a,

1995b). We discuss a recently found connection between the average-

case analysis of the GCC-condition number and covering processes on

spheres, and we present a sharp result on the probability distribution of

C(A) for feasible inputs due to Bürgisser et al. (2007).

The main goal of this survey is to show that part two of Smale’s

scheme can be naturally refined by performing a smoothed analysis of

the condition number μ(x) involved. This was already suggested by

Spielman and Teng in their ICM 2002 paper. For the matrix condi-

tion number, results in this direction were obtained by Wschebor (2004)

and Sankar et al. (2006). A recent paper by Tao and Vu (2007) deals

with the matrix condition number under random discrete perturbations.

Dunagan et al. (2003) gave a smoothed analysis of Renegar’s condition
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number of linear programming, thereby obtaining for the first time a

smoothed analysis for the running time of interior-point methods, see

also Spielman and Teng (2003).

A paper by Demmel (1988) has the remarkable feature that the prob-

abilistic average-case analysis performed there for a variety of problems

is not done with ad-hoc arguments adapted to the problem considered.

Instead, these applications are all derived from a single result bounding

the tail of the distribution of a conic condition number in terms of geo-

metric invariants of the corresponding set of ill-posed inputs. Bürgisser

et al. (2006, 2008) recently extended Demmel’s result from average-case

analysis to a natural geometric framework of smoothed analysis of conic

condition numbers, called uniform smoothed analysis. This result will

be presented in Section 1.6. The critical parameter entering these esti-

mates turned out to be the degree of the defining equations of the set

of ill-posed inputs. This result has a wide range of applications to lin-

ear and polynomial equation solving, as explained in Section 1.6.1. In

particular, it easily gives a smoothed analysis of the condition number

of a matrix. Moreover, Amelunxen and Bürgisser (2008) showed that

this result, after suitable modification to a spherical convex setting, also

allows a smoothed analysis of the GCC-condition number of linear pro-

gramming.

The mathematical setting of uniform smoothed analysis has a clean

and simple description. The set of ill-posed inputs to a computational

problem is modelled as a subset ΣS of a sphere Sp , which is considered

the data space. In most of our applications, ΣS is an algebraic hypersur-

face, but for optimization problems ΣS will be semialgebraic. The cor-

responding conic condition number C(a) of an input a ∈ Sp is defined as

C(a) =
1

sin dS (a,ΣS )
,

where dS refers to the angular distance on Sp . For 0 ≤ σ ≤ 1 let B(a, σ)

denote the spherical cap in the sphere Sp centered at a ∈ Sp and hav-

ing angular radius arcsinσ. Moreover, we define for 0 < ǫ ≤ 1 the

ǫ-neighborhood of ΣS as

T (ΣS , ǫ) := {a ∈ Sp | dS (a,ΣS ) < arcsin ǫ}.

The task of a uniform smoothed analysis of C consists of providing good

upper bounds on

sup
a∈S p

Proba∈B (a,σ ){C(a) ≥ ǫ−1},
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Fig. 1.2. Neighborhood of the curve ΣS intersected with a spherical disk.

where a is assumed to be chosen uniformly at random in B(a, σ). The

probability occurring here has an immediate geometric meaning:

Proba∈B (a,σ ){C(a) ≥ ǫ−1} =
vol (T (ΣS , ǫ) ∩ B(a, σ))

vol (B(a, σ))
. (1.2)

Thus uniform smoothed analysis means to provide bounds on the rel-

ative volume of the intersection of ǫ-neighborhoods of ΣS with small

spherical disks, see Figure 1.2. We note that uniform smoothed analysis

interpolates transparently between worst-case and average-case analysis.

Indeed, when σ = 0 we get worst-case analysis, while for σ = 1 we obtain

average-case analysis. (Note that Sp = B(a, 1) ∪ B(−a, 1) for any a.)

In Section 1.7 we explain the rich mathematical background behind

our uniform smoothed analysis estimates. We first review classical re-

sults on the volume of tubes and then state the principal kinematic

formula of integral geometry for spheres. Finally, in Section 1.7.3, we

outline the proof of the main Theorem 1.2, which proceeds by estimat-

ing the integrals of absolute curvature arising in Weyl’s tube formula

(1939) with the help of Chern’s (1966) principal kinematic formula and

Bézout’s theorem.

1.2 Condition Numbers for Linear Algebra

A numerical computation problem can often be formalized by a mapping

f : U → Y between finite-dimensional real or complex vector spaces X

and Y , where U is an open subset of X. The space X is interpreted

as the set of inputs to the problem, Y is the set of solutions, and f

is the solution map. Small perturbations δx of an input x result in a

perturbation δy of the output y = f(x). In order to quantify this effect
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1. Smoothed Analysis of Condition Numbers 7

with regard to small relative errors, we choose norms on the spaces X

and Y and define the relative condition number of f at x by

κ(f, x) := lim
ǫ→0

sup
‖δx‖≤ǫ‖x‖

‖f(x + δx) − f(x)‖/‖f(x)‖
‖δx‖/‖x‖ .

If f is differentiable at x, this can be expressed in terms of the operator

norm of the Jacobian Df(x) with respect to the chosen norms:

κ(f, x) = ‖Df(x)‖ ‖x‖
‖f(x)‖ .

In the case X = Y = R, the logarithm of the condition number measures

the loss of precision when evaluating f : if we know x up to ℓ decimal

digits, then we know f(x) roughly up to ℓ− log10 κ(f, x) decimal digits.

Consider matrix inversion f : GL(m, R) → R
m×m , A 
→ A−1 , measur-

ing errors with respect to the L2-operator norm. A perturbation argu-

ment shows that the condition number of f at A equals the classical

matrix condition number

κ(A) := κ(f,A) = ‖A‖ ‖A−1‖

of the matrix A. It is easy to see that κ(A) also equals the condition num-

ber of the map GL(m, R) → R
m , A 
→ A−1b for fixed nonzero b ∈ R

m .

In fact, κ(A) determines the condition number for solving a quadratic

linear system of equations. It is also known that κ(A) dominates the

condition number of several other problems of numerical linear alge-

bra, like the Cholesky and QR decomposition of matrices, see Amodei

and Dedieu (2008). Moreover, the condition number κ(A) appears in

Wilkinson’s round-off analysis of Gaussian elimination with partial piv-

oting (together with the so-called growth factor), see Wilkinson (1963)

and Higham (1996).

Let us return to the problem of matrix inversion. We can interpret

the set of singular matrices Σ := {A ∈ R
m×m | det A = 0} as its set of

ill-posed instances. Let dist(A,Σ) denote the distance of the matrix A

to Σ, measured with respect to the L2-operator norm. The distance of

A to Σ with respect to the Frobenius norm ‖A‖F := (
∑

ij a2
ij )

1/2 shall

be denoted by distF (A,Σ). The theorem of Eckart and Young (1936)

states that dist(A,Σ) = distF (A,Σ) = ‖A−1‖−1 . As the right-hand

side equals the smallest singular value of A, this is just a special case of

the well-known fact that the kth largest singular value of A equals the

distance of A to the set of matrices of rank less than k (with respect to

the L2-operator norm). We rephrase Eckart and Young’s result as the
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following condition number theorem

κ(A) =
‖A‖

dist(A,Σ)
=

‖A‖
distF (A,Σ)

. (1.3)

It is remarkable that the condition number κ(A), which was defined using

local properties, can be characterized in this global geometric way.

Demmel (1987) realized that this observation for the classical matrix

condition number actually holds in much larger generality. For numerous

computation problems, the condition number of an input x of norm one,

say, can be bounded up to a constant factor by the inverse distance

of x to a corresponding set of ill-posed inputs Σ. It is this key insight

that allows to perform probabilistic analyses of condition numbers by

geometric tools.

To further illustrate this connection, consider eigenvalue computa-

tions. Let λ ∈ C be a simple eigenvalue of A ∈ C
m×m . The sensitivity to

compute λ from A is captured by a condition number κ(A, λ), see (1.22).

Wilkinson (1972) proved that

κ(A, λ) ≤
√

2 ‖A‖F

distF (A,Σeigen)
,

where Σeigen is the set of matrices in C
m×m having a multiple eigenvalue.

Clearly, condition numbers are a crucial issue when dealing with fi-

nite precision computations and round-off errors. When considering

iterative methods (instead of direct methods), it turns out that, even

when assuming infinite precision arithmetic, the condition of an input

often affects the number of iterations required to achieve a certain pre-

cision. A famous example for this phenomenon is the conjugate gradient

method of Hestenes and Stiefel (1952). For a given linear system Ax = b,

A a symmetric positive definite matrix, the conjugate gradient method

starts with an initial value x0 ∈ R
n and produces a sequence of iterates

x0 , x1 , . . . , xn = x∗ satisfying

‖xk − x∗‖A ≤ 2

(

√

κ(A) − 1
√

κ(A) + 1

)k

‖x0 − x∗‖A ,

where the A-norm of a vector v is defined as ‖v‖A := (vT Av)1/2 . There-

fore, roughly 1
2

√

κ(A) ln 1
ǫ iterations are sufficient in order to achieve

‖xk − x∗‖A ≤ ǫ ‖x0 − x∗‖A .
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1.3 Condition Numbers for Convex Optimization

We restrict our discussion to feasibility problems in convex conic form.

Let X and Y be real finite-dimensional vector spaces endowed with

norms. Further, let K ⊆ X be a closed convex cone that is assumed to

be regular, that is K ∩ (−K) = {0} and K has nonempty interior. We

denote by L(Y,X) the space of linear maps from Y to X endowed with

the operator norm. Given A ∈ L(Y,X), consider the feasibility problem

of deciding

∃y ∈ Y \ {0} Ay ∈ K. (1.4)

Two special cases of this general framework should be kept in mind. For

K = R
n
+ , the nonnegative orthant in R

n , one obtains the homogeneous

linear programming feasibility problem. The feasibility version of ho-

mogeneous semidefinite programming corresponds to the cone K = Sn
+

consisting of the positive semidefinite matrices in R
n×n .

The feasibility problem dual to (1.4) is

∃x∗ ∈ X∗ \ {0} A∗x∗ = 0, x∗ ∈ K∗. (1.5)

Here X∗, Y ∗ are the dual spaces of X,Y , respectively, A∗ ∈ L(X∗, Y ∗)

denotes the map adjoint to A, and K∗ := {y∗ ∈ Y ∗ | ∀x ∈ K 〈y∗, x〉 ≥ 0}
denotes the cone dual to K.

We denote by D the set of instances A ∈ L(Y,X) for which the

problem (1.4) is strictly feasible, i.e., there exists y ∈ Y such that

Ay ∈ int(K). Likewise, we denote by P the set of A ∈ L(Y,X) such that

(1.5) is strictly feasible, i.e., there exists x∗ ∈ int(K∗) with A∗x∗ = 0.

Both D and P are disjoint open subsets of L(Y,X) and duality in

convex optimization implies that P is the complement of the closure of

D in L(Y,X), cf. Boyd and Vandenberghe (2004). The conic feasibility

problem is to decide for given A ∈ L(Y,X) whether (1.4) or (1.5) holds.

The common boundary Σ := ∂D = ∂P of the sets D and P can be

considered as the set of ill-posed instances. Indeed, for given A ∈ Σ,

arbitrarily small perturbations of A may yield instances in both D and P.

Renegar (1995a) defined the condition number of the conic feasibility

problem by

C(A) :=
‖A‖

dist(A,Σ)
. (1.6)

He observed that the number of steps of interior-point algorithms solv-

ing the conic feasibility problem can be effectively bounded in terms
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of C(A). Before elaborating on this important issue, let us character-

ize the condition number C(A) in a different way. Suppose there exists

e ∈ int(K) such that the unit ball B(e, 1) centered at e is contained

in K. We define λmin : X → R by λmin(x) := max{t ∈ R | x − te ∈ K}
and note that x ∈ K ⇔ λmin(x) ≥ 0. For K = R

n
+ and e = (1, . . . , 1) we

have λmin(x) = mini xi , while in the case K = Sn
+ and e being the unit

matrix, λmin(x) equals the minimum eigenvalue of x.

The problem (1.4) is feasible iff there exists y ∈ Y of norm one such

that λmin(Ay) ≥ 0. A vector y maximizing λmin(Ay)/‖y‖ may be in-

terpreted as a best-conditioned solution, due to the following max-min

characterization in Cheung et al. (2008):

dist(A,Σ) =
∣

∣

∣
max
‖y‖=1

λmin(Ay)
∣

∣

∣
. (1.7)

Actually, in that paper a more general result is shown. Suppose we have

a multifold conic structure: X = X1 × · · · × Xr , where Xi is a normed

vector space, K = K1 × · · · × Kr with regular closed convex cones Ki

in Xi , and ei ∈ int(Ki) such that the unit ball centered at ei is contained

in Ki . We have a corresponding function λi
min : Xi → R. Then (1.4) can

be written as

∃y ∈ Y \ {0} A1y1 ∈ K1 , . . . , Aryr ∈ K1 ,

where Ai ∈ L(Y,Xi) is the composition of A with the projection onto Xi .

Generalizing (1.6), we define the corresponding multifold condition num-

ber C(A) by

C(A) :=

(

min
B∈Σ

max
i

‖Ai − Bi‖
‖Ai‖

)−1

.

It is easy to see that C(A) ≤ C(A) when taking ‖A‖ = maxi ‖Ai‖. Note

that in the case r = 1 of just one factor, we retrieve C(A) = C(A).

The condition number C(A) seems a more natural measure of condition-

ing in the multifold setting, when allowing component normalization as

preconditioning. Cheung et al. (2008) proved the following condition

number theorem, extending (1.7),

1

C(A)
=

∣

∣

∣
max
‖y‖=1

min
i

λi
min(Aiy)

‖Ai‖
∣

∣

∣
. (1.8)

Let us now have a closer look at the important special case of Xi = R,

Ki = R+ , ei = 1 for i = 1, . . . , n. We endow X = R
n with the L∞-norm

and Y := R
m+1 with the L2-norm. The problem (1.4) now reads as the
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