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Lévy processes

Summary Section 1.1 is a review of basic measure and probability theory. In

Section 1.2, we meet the key concepts of the infinite divisibility of random vari-

ables and of probability distributions, which underly the whole subject. Important

examples are the Gaussian, Poisson and stable distributions. The celebrated Lévy–

Khintchine formula classifies the set of all infinitely divisible probability distributions

by means of a canonical form for the characteristic function. Lévy processes are

introduced in Section 1.3. These are essentially stochastic processes with stationary

and independent increments. Each random variable within the process is infinitely

divisible, and hence its distribution is determined by the Lévy–Khintchine formula.

Important examples are Brownian motion, Poisson and compound Poisson processes,

stable processes and subordinators. Section 1.4 clarifies the relationship between

Lévy processes, infinite divisibility and weakly continuous convolution semigroups

of probability measures. Finally, in Section 1.5, we briefly survey recurrence and tran-

sience,Wiener–Hopf factorisation, local times for Lévy processes, regular variation and

subexponentiality.

1.1 Review of measure and probability

The aim of this section is to give a brief resumé of key notions ofmeasure theory
and probability thatwill be used extensively throughout the book and to fix some
notation and terminology once and for all. I emphasise that reading this section
is no substitute for a systematic study of the fundamentals from books, such as
Billingsley [48], Itô [177],Ash andDoléans-Dade [17],Rosenthal [311],Dudley
[98] or, for measure theory without probability, Cohn [80]. Knowledgeable
readers are encouraged to skip this section altogether or to use it as a quick
reference when the need arises.
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2 Lévy processes

1.1.1 Measure and probability spaces

Let S be a non-empty set and F a collection of subsets of S. We call F a
σ-algebra if the following hold:

(1) S ∈F .
(2) A∈F ⇒ Ac ∈F .
(3) If (An, n∈N) is a sequence of subsets in F then

⋃∞
n=1 An ∈F .

The pair (S,F) is called a measurable space. A measure on (S,F) is a
mapping µ :F → [0,∞] that satisfies
(1) µ(∅) = 0,
(2)

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

for every sequence (An, n∈N) of mutually disjoint sets in F .

The triple (S,F ,µ) is called a measure space.
The quantity µ(S) is called the total mass of µ and µ is said to be finite if

µ(S) < ∞. More generally, a measure µ is σ-finite if we can find a sequence
(An, n∈N) in F such that S =⋃∞

n=1 An and each µ(An) <∞.
For the purposes of this book, there will be two cases of interest. The first

comprises

• Borel measures The Borel σ -algebra of Rd is the smallest σ -algebra of
subsets of Rd that contains all the open sets. We denote it by B(Rd ). If
S ∈B(Rd ) we define its Borel σ -algebra to be

B(S) = {E ∩ S;E ∈B(Rd ).

Equivalently, B(S) is the smallest σ -algebra of subsets of S that contains
every open set in S when S is equipped with the relative topology induced
fromRd , so thatU ⊆ S is open in S ifU ∩S is open inRd . Elements of B(S)
are called Borel sets and any measure on (S,B(S)) is called a Borel measure.

One of the best known examples of a Borel measure is given by the Lebesgue
measureonS = Rd .This takes the following explicit formon sets in the shapeof
boxesA = (a1, b1)×(a2, b2)×· · ·×(ad , bd )where each−∞ < ai < bi <∞:

µ(A) =
d∏
i=1

(bi − ai).
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1.1 Review of measure and probability 3

Lebesgue measure is clearly σ-finite but not finite.
Of course, Borel measures make sense in arbitrary topological spaces, but

we will not have need of this degree of generality here.
The second case comprises

• Probabilitymeasures Herewe usually write S = � and take� to represent
the set of outcomes of some random experiment. Elements of F are called
events and any measure on (�,F) of total mass 1 is called a probability
measure and denoted P. The triple (�,F ,P) is then called a probability
space.

Occasionally we will also need counting measures, which are those that take
values in N ∪ {0}.
A proposition p about the elements of S is said to hold almost every-

where (usually shortened to a.e.) with respect to a measure µ if N =
{s∈ S; p(s)is false} ∈F and µ(N ) = 0. In the case of probability measures,
we use the terminology ‘almost surely’ (shortened to a.s.) instead of ‘almost
everywhere’, or alternatively ‘with probability 1’. Similarly, we say that ‘almost
all’ the elements of a set A have a certain property if the subset of A for which
the property fails has measure zero.

Continuity of measures Let (A(n), n∈N) be a sequence of sets in F with
A(n) ⊆ A(n+1) for each n∈N.We thenwriteA(n) ↑ AwhereA =⋃∞

n=1 A(n),
and we have

µ(A) = lim
n→∞µ(A(n)).

Whenµ is a probability measure, this is usually called continuity of probability.

Let G be a group whose members act as measurable transformations of
(S,F), so that g : S → S for each g ∈G and gA∈F for all A∈F , g ∈G,
where gA = {ga, a ∈A}. We say that a measure µ on (S,F) is G-invariant if

µ(gA) = µ(A)

for each g ∈G, A∈F .
A (finite) measurable partition of a set A∈F is a family of sets

B1,B2, . . . ,Bn ∈F for which Bi ∩ Bj = ∅ whenever i �= j and
⋃n

i=1 Bi = A.
We use the term Borel partition when F is a Borel σ -algebra.
We say that a σ -algebra G is a sub-σ -algebra of F if G ⊆ F , i.e. A ⊆ G ⇒

A ⊆ F . If {Gi, i ∈ I} is a (not necessarily countable) family of sub-σ -algebras of
F then

⋂
i ∈ I Gi is the largest sub-σ -algebra contained in each Gi and

∨
i ∈ I Gi

denotes the smallest sub-σ -algebra that contains each Gi.
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4 Lévy processes

If P is a probability measure and A,B∈F , it is sometimes notationally
convenient to write P(A,B) = P(A ∩ B).

Completion of a measure Let (S,F ,µ) be a measure space. Define

N = {A ⊆ S; ∃N ∈F with µ(N ) = 0 and A ⊆ N }

and

F = {A ∪ B;A∈F ,B∈N }.

Then F is a σ -algebra and the completion of the measure µ on (S,F) is the
measure µ on (S,F) defined by

µ(A ∪ B) = µ(A), A∈F , B∈N .

In particular, B(S) is called the σ -algebra of Lebesgue measurable sets in S.

π -systems and d -systems Let C be an arbitrary collection of subsets of S. We
denote the smallest σ -algebra containing C by σ(C), so σ(C) is the intersection
of all the σ -algebras which contain C.
Sometimes we have to deal with collections of sets which do not form a

σ -algebra but which still have enough structure to be useful. To this end we
introduce π - and d -systems.AcollectionH of subsets of S is called a π -system
if A ∩ B∈H for all A,B∈H.
A collection D of subsets of S is called a d -system if

(i) S ∈D,
(ii) If A,B∈D with B⊆A then the set theoretic difference A− B∈D,
(ii) If (An, n∈N) is a sequence of subsets wherein An ∈D and An ⊆ An+1 for

each n∈N, then
⋃

n∈N An ∈D.

If C is an arbitrary collection of subsets of S then we denote the smallest
d -system containing C by d(C), so d(C) is the intersection of all the d -systems
which contain C.
The key result that we will need about π -systems and d -systems is the

following.

Lemma 1.1.1 (Dynkin’s lemma) If H is a π -system then d(H) = σ(H).
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1.1 Review of measure and probability 5

1.1.2 Random variables, integration and expectation

For i = 1, 2, let (Si,Fi) be measurable spaces. A mapping f : S1 → S2 is said
to be (F1,F2)-measurable if f −1(A)∈F1 for all A∈F2. If each S1 ⊆ Rd ,
S2 ⊆ Rm and Fi = B(Si), f is said to be Borel measurable. In the case d = 1,
we sometimes find it useful to write each Borel measurable f as f + − f −
where, for each x ∈ S1, f +(x) = max{f (x), 0} and f −(x) = −min{f (x), 0}. If
f = (f1, f2, . . . , fd ) is a measurable mapping from S1 to Rd , we write f + =
(f +1 , f +2 , . . . , f +d ) and f − = (f −1 , f −2 , . . . , f −d ).
In what follows, whenever we speak of measurable mappings taking values

in a subset of Rd , we always take it for granted that the latter is equipped with
its Borel σ -algebra.
When we are given a probability space (�,F ,P) then measurable mappings

from � into Rd are called random variables. Random variables are usually
denoted X ,Y , . . . . Their values should be thought of as the results of quanti-
tative observations on the set �. Note that if X is a random variable then so
is f (X ) = f ◦ X , where f is a Borel measurable mapping from Rd to Rm. A
measurable mapping Z = X + iY from � into C (equipped with the natural
Borel structure inherited from R2) is called a complex random variable. Note
that Z is measurable if and only if both X and Y are measurable.
If X is a random variable, its law (or distribution) is the Borel probability

measure pX on Rd defined by

pX = P ◦ X−1.

We say that X is symmetric if pX (A) = pX (−A) for all A∈B(Rd ).
Two random variables X and Y that have the same probability law are said to

be identically distributed, and we sometimes denote this as X
d= Y . For a one-

dimensional random variableX , its distribution function is the right-continuous
increasing function defined by FX (x) = pX ((−∞, x]) for each x ∈R.
IfW = (X ,Y ) is a random variable taking values in R2d , the probability law

ofW is sometimes called the joint distribution ofX andY . The quantities pX and
pY are then called the marginal distributions ofW , where pX (A) = pW (A,Rd )

and pY (A) = pW (Rd ,A) for each A∈B(Rd ).
Suppose that we are given a collection of random variables (Xi, i ∈ I) in a

fixed probability space; then we denote by σ(Xi, i ∈ I) the smallest σ -algebra
contained in F with respect to which all the Xi are measurable. When there
is only a single random variable X in the collection, we denote this σ -algebra
as σ(X ).
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6 Lévy processes

TheDoob–Dynkin lemma states that a random variable Y is measurable with
respect to σ(X1, . . . ,Xn) if and only if there is a Borel measurable function
g :Rdn → Rd such that Y = g(X1, . . . ,Xn).

Let S be a Borel subset of Rd that is locally compact in the relative topology.
We denote as Bb(S) the linear space of all bounded Borel measurable func-
tions from S to RBanach space) with respect to ||f || = supx ∈ S |f (x)| for each
f ∈Bb(S). Let Cb(S) be the subspace of Bb(S) comprising continuous func-
tions, C0(S) be the subspace comprising continuous functions that vanish at
infinity and Cc(S) be the subspace comprising functions with compact support,
so that

Cc(S) ⊆ C0(S) ⊆ Cb(S).

Cb(S) and C0(S) are both Banach spaces under || · || and Cc(S) is norm
dense in C0(S). When S is compact, all three spaces coincide. For each n∈N,
Cn
b (R

d ) is the space of all f ∈Cb(R
d )∩Cn(Rd ) such that all the partial deriva-

tives of f , of order up to and including n, are in Cb(R
d ). We further define

C∞b (Rd ) = ⋂n∈N Cn
b (R

d ). We define Cn
c (R

d ) and Cn
0 (R

d ) analogously, for
each 1 ≤ n ≤ ∞.
Let (S,F) be a measurable space. A measurable function, f : S → Rd , is

said to be simple if

f =
n∑
j=1

cjχAj

for some n∈N, where cj ∈Rd andAj ∈F for 1 ≤ j ≤ n.We callχA the indicator
function, defined for any A∈F by

χA(x) = 1 whenever x ∈A; χA(x) = 0 whenever x /∈ A.

Let �(S) denote the linear space of all simple functions on S and let µ be a
measure on (S,F). The integral with respect to µ is the linear mapping from
�(S) into Rd defined by

Iµ(f ) =
n∑
j=1

cjµ(Aj)

for each f ∈�(S). The integral is extended to measurable functions f =
(f1, f2, . . . , fd ), where each fi ≥ 0, by the prescription for 1 ≤ i ≤ d

Iµ(fi) = sup{Iµ(gi), g = (g1, . . . , gd )∈�(S), gi ≤ fi}
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1.1 Review of measure and probability 7

and to arbitrary measurable functions f by

Iµ(f ) = Iµ(f
+)− Iµ(f

−).

We write Iµ(f ) =
∫
f (x)µ(dx) or, alternatively, Iµ(f ) =

∫
fdµ. Note that at this

stage there is no guarantee that any of the Iµ(fi) is finite.
We say that f is integrable if |Iµ(f +)| <∞ and |Iµ(f −)| <∞. For arbitrary

A∈F , we define ∫
A
f (x)µ(dx) = Iµ(f χA).

It is worth pointing out that the key estimate∣∣∣∣∫
A
f (x)µ(dx)

∣∣∣∣ ≤ ∫
A
|f (x)|µ(dx)

holds in this vector-valued framework (see e.g. Cohn [80], pp. 352–3).
In the case where we have a probability space (�,F ,P), the linear mapping

IP is called the expectation and written simply as E so, for a random variable
X and Borel measurable mapping f :Rd → Rm, we have

E(f (X )) =
∫
�

f (X (ω))P(dω) =
∫

Rm
f (x)pX (dx),

if f ◦ X is integrable. If A∈F , we sometimes write E(X ;A) = E(XχA).
In the case d = m = 1 we have Jensen’s inequality,

f (E(X )) ≤ E(f (X )),

whenever f :R → R is a convex function and X and f (X ) are both integrable.
The mean of X is the vector E(X ) (when it exists) and this is sometimes

denoted µ (if there is no measure called µ already in the vicinity) or µX , if we
want to emphasise the underlying random variable. If X = (X1,X2, . . . ,Xd )
and Y = (Y1,Y2, . . . ,Yd ) are two random variables then the d × d matrix with
(i, j)th entry E[(Xi−µXi )(Yj−µYj )] is called the covariance of X and Y (when
it exists) and denoted Cov(X ,Y ). In the case X = Y and d = 1, we write
Var(X ) = Cov(X ,Y ) and call this quantity the variance of X . It is sometimes
denoted σ 2 or σ 2

X . When d = 1 the quantity E(X n), where n∈N, is called
the nth moment of X , when it exists. X is said to have moments to all orders
if E(|X |n) < ∞, for all n∈N. A sufficient condition for this is that X has an
exponential moment, i.e. E(eα|X |) <∞ for some α > 0.
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8 Lévy processes

For an arbitrary Rd -valued random variable X , we can easily verify the
following for all p > 0:

• E(|X |p) <∞ if and only if E(|Xj|p) <∞, for all 1 ≤ j ≤ d .
• If E(|X |p) <∞ then E(|X |q) <∞, for all 0 < q < p.

The Chebyshev–Markov inequality for a random variable X is

P(|X − αµ| ≥ C) ≤ E(|X − αµ|n)
Cn

,

where C > 0, α ∈R, n∈N. The commonest forms of this are the Chebyshev
inequality (n = 2, α = 1) and the Markov inequality (n = 1, α = 0).
We return to a general measure space (S,F ,µ) and list some key theorems

for establishing the integrability of functions from S to Rd . For the first two of
these we require d = 1.

Theorem 1.1.2 (Monotone convergence theorem) If (fn, n∈N) is a sequence
of non-negative measurable functions on S that is (a.e.) monotone increasing
and converging pointwise to f (a.e.), then

lim
n→∞

∫
S
fn(x)µ(dx) =

∫
S
f (x)µ(dx).

From this we easily deduce the following corollary.

Corollary 1.1.3 (Fatou’s lemma) If (fn, n∈N) is a sequence of non-negative
measurable functions on S, then

lim inf
n→∞

∫
S
fn(x)µ(dx) ≥

∫
S
lim inf
n→∞ fn(x)µ(dx),

which is itself then applied to establish the following theorem.

Theorem 1.1.4 (Lebesgue’s dominated convergence theorem) If (fn, n∈N)

is a sequence of measurable functions from S to Rd converging pointwise to f
(a.e.) and g ≥ 0 is an integrable function such that |fn(x)| ≤ g(x) (a.e.) for all
n∈N, then

lim
n→∞

∫
S
fn(x)µ(dx) =

∫
S
f (x)µ(dx).

We close this section by recalling function spaces of integrablemappings. Let
1 ≤ p <∞ and denote by Lp(S,F ,µ;Rd ) the Banach space of all equivalence
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1.1 Review of measure and probability 9

classes of mappings f : S → Rd which agree a.e. (with respect to µ) and for
which ||f ||p <∞, where || · ||p denotes the norm

||f ||p =
[∫

S
|f (x)|pµ(dx)

]1/p
.

In particular, when p = 2 we obtain a Hilbert space with respect to the inner
product

〈f , g〉 =
∫
S
(f (x), g(x))µ(dx),

for each f , g ∈L2(S,F ,µ;Rd ). If 〈f , g〉 = 0,we say that f and g are orthogonal.
A linear subspace V of L2(S,F ,µ;Rd ) is called a closed subspace if it is closed
with respect to the topology induced by || · ||2, i.e. if (fn; n∈N) is a sequence
in V that converges to f in L2(S,F ,µ;Rd ) then f ∈V .
When there can be no room for doubt, we will use the notation Lp(S) or

Lp(S,µ) for Lp(S,F ,µ;Rd ).
Hölder’s inequality is extremely useful. Let p, q > 1 be such that

1/p+ 1/q = 1.

Let f ∈Lp(S) and g ∈Lq(S) and define (f , g) : S → R by (f , g)(x) =
(f (x), g(x)) for all x ∈ S. Then (f , g)∈L1(S) and we have

||(f , g)||1 ≤ ||f ||p||g||q.

When p = 2, this is called the Cauchy–Schwarz inequality.
Another useful fact is that for each 1 ≤ p < ∞ if we define �p(S) =

�(S) ∩ Lp(S), then �p(S) is dense in Lp(S), i.e. given any f ∈Lp(S) we can
find a sequence (fn, n∈N) in �p(S) such that limn→∞ ||f − fn||p = 0.
The spaceLp(S,F ,µ) is said to be separable if it has a countable dense subset.

Asufficient condition for this is that the σ -algebraF is countably generated, i.e.
there exists a countable set C such that F is the smallest σ -algebra containing
C. If S ∈B(Rd ) then B(S) is countably generated.

1.1.3 Conditional expectation

Let (S,F ,µ) be an arbitrary measure space.Ameasure ν on (S,F) is said to be
absolutely continuous with respect to µ if A∈F and µ(A) = 0⇒ ν(A) = 0.
We then write ν * µ. Two measures µ and ν are said to be equivalent if they
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10 Lévy processes

are mutually absolutely continuous. The key result on absolutely continuous
measures is

Theorem 1.1.5 (Radon–Nikodým) If µ is σ -finite and ν is finite with ν * µ,
then there exists a measurable function g : S → R+ such that, for each A∈F ,

ν(A) =
∫
A
g(x)µ(dx).

The function g is unique up to µ-almost-everywhere equality.

The functions g appearing in this theorem are sometimes denoted dν/dµ and
called (versions of ) the Radon–Nikodým derivative of ν with respect to µ. For
example, if X is a random variable with law pX that is absolutely continuous
with respect to Lebesgue measure on Rd , we usually write fX = dpX /dx and
call fX a probability density function (or sometimes a density or a pdf for short).
Now let (�,F ,P) be a probability space and G be a sub-σ -algebra of F .

Let X be an R-valued random variable with E(|X |) <∞, and for now assume
that X ≥ 0. We define a finite measure QX on (�,G) by the prescription
QX (A) = E(XχA) for A∈G; then QX * P, and we write

E(X |G) = dQX

dP
.

We call E(X |G) the conditional expectation of X with respect to G. It is a
random variable on (�,G,P) and is uniquely defined up to sets of P-measure
zero. For arbitrary real-valued X with E(|X |) <∞, we define

E(X |G) = E(X+|G)− E(X−|G).

When X = (X1,X2, . . . ,Xd ) takes values in Rd with E(|X |) <∞, we define

E(X |G) = (E(X1|G),E(X2|G), . . . ,E(Xd |G)).

We sometimes write EG(·) = E(·|G).
We now list a number of key properties of the conditional expectation:

• E(E(X |G)) = E(X ).
• |E(X |G)| ≤ E(|X ||G) a.s.
• If Y is a G-measurable random variable and E(|(X ,Y )|) <∞ then

E((X ,Y )|G) = (E(X |G),Y ) a.s.
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