
1

Introduction

1.1 The Aim of This Book

The theme of this book is to reconsider reflexivity as the essential property
of sign systems. In this book, a sign is considered a means of signification,
which at this point can be briefly understood as something that stands for
something else. For example, a sequence of letters, ‘computer’, stands for an
electronic machine. Such sign-based proxy relationships are powerful tools
for communication. Signs function in the form of a system consisting of a
relation among signs and their interpretations.

As will be seen further along in the book, a sign is essentially reflexive,
with its signification articulated by the use of itself. Reflexivity is taken for
granted, as the premise for a sign system such as natural languages. On
the other hand, the inherent risk of unintelligibility of reflexivity, has been
noted throughout human history in countless paradoxes. For example, in a
Greek myth, Narcissus became immobile as a result of staring at his own
reflection in the water. As shown by such examples, reflexivity has been an issue
since ancient times in philosophy, logic, and language. Still, unless reflexivity
causes contradiction or nonsensicality, reflexivity will stay as the manifest
mechanism hiding the way in which sign systems work. Reflexivity becomes
the theme mainly at the border between significance and insignificance. With
artificial languages, however, it is necessary to design the border of significance
and insignificance and thus their consideration will serve for highlighting the
premise underlying signs and sign systems.

The artificial languages considered in this book are programming lan-
guages. They are artificial languages designed to control machines. The
problems underlying programming languages are fundamentally related to
reflexivity, and it is not too far-fetched to say that the history of programming
language development is the quest for a proper handling of reflexivity. This

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org


2 Semiotics of Programming

book does not merely survey the consequences, but attempts to consider pro-
gramming languages from a broader viewpoint of signs and sign systems in
general. The domain serving this purpose is semiotics, the theoretical frame-
work in which the general properties of signs and sign systems are described.
In particular, the aim of the book is to consider the nature of signs and sign
systems through discussion of programming languages by semiotics.

Such an endeavor highlights the difference between computer signs and
human signs. The comparison of machines and humans is a recurring theme
in conversations in daily life, in science fiction, and in philosophical discus-
sions in academic domains, despite the fact that humans and machines are
utterly different, with one being biological and the other mechanical. Count-
less metaphors compare computers to humans, and vice versa. This very fact
suggests machine-based and human systems can be considered similar, to
some extent.

A common test bed applied in this book regarding this similarity is the
sign systems. Readers might doubt the plausibility of this comparison of
human and computer sign systems. The world of computer software indeed
consists only of signs, because all information processed on computers is
ultimately made up of zeros and ones. Still, computer languages often appear
very limited as compared to human language, especially to those who are not
programmers. This delineation of human and computer language, however,
is not as trivial as a division based on human language being complex and
computer language being simple; rather, the delineation is a difficult issue, as
seen in controversies over formal theories of language. At the same time, some
readers might also wonder to what extent humanity can be considered merely
in terms of signs and sign systems. Such an approach, however, is indeed
extant in the humanities, particularly in semiotics, linguistics, and philosophy.
It is therefore not an oversimplification to compare human language and
computer language on the common test bed of sign systems.

Considering both as sign systems, their comparison seems to lead to high-
light the premise upon which our sign system is founded. Namely, the ap-
plication of semiotic theories to programming enables the consideration, in
a coherent manner, of the universal and specific nature of signs in machine
and human systems (see Figure 1.1). Such a comparison invokes the nature
of descriptions made by humans in general, of the kinds of features a de-
scription possesses, and of the limitations to which a description is subject.
These limitations, this book suggests, are governed by reflexivity. Moreover,
the difference between computer signs and human signs lies in their differ-
ing capability to handle reflexivity, which informs both the potential and

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org


Introduction 3

general characteristics 
 of

signs

machine-specific
sign properties

human-specific
sign properties

computer programs
as the theory and practice

of machine signs
semiotics as the theory 

of human signs

figure 1.1. Human signs and machine signs.

the limitations of the two sign systems. While people do get puzzled, they
seldom become uncontrollable because of one self-reference. In contrast, for
computers, reflexivity is one of the most frequent sources of malfunction.

Given this key concept of reflexivity, this book straddles the domains of
semiotics and computation, as well as those of the humanities and engi-
neering, and the study of machines and humans. Such an interdisciplinary
approach can be expected to bring forth contributions to each participating
realm.

1.2 Computational Contributions to Semiotics

The purpose of semiotics, in general, is to explain signs and sign systems, to
describe their general characteristics and structure, and thus to establish a
methodology for their explanation. Behind these considerations is the ques-
tion of the meaning of meaning, or how signs convey meaning. The domain
of modern semiotics was established by Saussure and Peirce, with roots dat-
ing back to the ancient Greeks and the scholastics. Before the nineteenth
century, the distinction between the arts and sciences was not recognized,
but scholars have since subdivided academia in this way. As a consequence,
the semiotic discipline was initially developed mainly by scholars in the arts,
and the preponderance of the existing literature on semiotics is humanities
oriented.

The object of semiotic analysis has traditionally been sign systems for hu-
man interpretation: natural language, texts, communication, codes, symbolic
systems, sign language, and various art forms. There are some exceptions,
such as biosemiotics, but the majority of studies examine human communi-
cation. Unfortunately, this means that semiotic studies have normally been
conducted without a clearly delineated separation between the sign system to
be analyzed and that used for its study. As a consequence, a solid theoretical

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org


4 Semiotics of Programming

foundation for semiotics has yet to be established. For example, even consid-
ering models of signs alone, various philosophers have each presented their
own ideas, and how these ideas correspond has remained unclear.

The use of computer languages as a semiotic subject does not suffer from
this failing, however, because human beings do not think in machine language.
Computer languages have their own type of interpretive system, external to the
interpretive systems of natural languages. All computer language expressions
are meant for interpretation on machines. Here we may remark how com-
puter programs have marked characteristics in terms of possessing explicit,
external interpretation schemes. They are open and explicit only for artificial
notations, and this holds for other artificial notational systems, such as those
in mathematics, logic, and even music and dance. Still, these notations are
meant for human beings to interpret. For example, mathematics is another
well-formed, rigorous sign system, but it is ultimately interpreted by human
beings, and therefore certain repetitive elements are frequently omitted.

In contrast, every computational procedure must be exhaustively described
in a programming language, inclusive of all repetitions, so that the processing
comes to a halt and is valid for the intended purpose. With respect to inter-
pretation, in a sense, there is in theory no system better than that of computer
languages because they are truly formal, external, and complete in scope.
Since this interpretation is performed mechanically, it is explicit, well formed,
and rigorous. Computer languages are the only existing large-scale sign sys-
tem with an explicit, fully characterized interpreter external to the human
interpretive system. Therefore, the application of semiotics to computer lan-
guages can contribute, albeit in a limited manner, to the fundamental theory
of semiotics.

Regarding this point, the reader might object that computation is quite
different from human interpretation, which is true. Indeed, as we shall see in
more detail in Chapter 4, computation is equivalent to chains of mere substitu-
tions. Substitution, however, is a simple scheme that could also be considered
a fundamental procedure underlying human interpretation. Moreover, even
though the interpretation of artificial languages differs from that of natural
languages, its study can bring forth a better understanding of interpretation
in general, as compared with neglecting such an approach.

Consequently, applying semiotics to the external, rigorous system of com-
puter programs helps formalize certain aspects of the fundamental frame-
work of semiotics. Understanding the semiotic problems in programming
languages leads us to formally reconsider the essential problems of signs.
Such reconsideration of the fundamentals of semiotics could ultimately lead
to an improved and renewed understanding of human signs as well.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org


Introduction 5

1.3 Semiotic Contributions to Computing

Computers are now indispensable in our daily lives. Behind every compu-
tational system is a program. Programming languages are among the most
widely applied artificial languages. People have attempted to describe various
conceivable phenomena in terms of computer programs, and the only form
of language exceeding this coverage is natural language. Computer program-
ming is thus the most successful application of artificial language, and the
scale of its practice is vast.

Most programs are generated by human beings. As expressions written in
programming languages are interpreted by both humans and machines, these
languages reflect the linguistic behaviors of both. The history of the develop-
ment of computer languages can be characterized as the history of an effort
to transform a mere mechanical command chain into more human-friendly
expressions. Thus, an analysis of recent, well-developed programming lan-
guages may reveal significant aspects of human linguistic behavior.

Many of the concepts, principles, and notions of computer program-
ming, however, have derived from technological needs, without being sit-
uated within the broader context of human thought. An example is that the
paradigm of object-oriented programming is considered to have been in-
vented in the 1960s. This was, however, no more than the rediscovery of
another way to look at signs. The technological development of program-
ming languages has thus been a rediscovery of ways to exploit the nature of
signs that had already been present in human thought.

The application of semiotics to programming languages therefore helps
situate certain technological phenomena within a humanities framework. To
the extent that computer programs are formed of signs, they are subject to
the properties of signs in general, which is the theme of this book. That is, the
problems existing in sign systems generally also appear in programming lan-
guages. This semiotic discussion of programming theory has sought to provide
a possible explanation of why programming and current computer systems
have necessarily converged to their current status and how computation is
fundamentally related to human semiosis.

1.4 Related Work

Generally, the relation between signs and reflexivity, without noting specific
examples at this juncture, has been a recurring theme appearing in many
investigations, in which at least two broad genres are apparent. First is the
reflexivity existing in natural languages and in human knowledge based upon

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org


6 Semiotics of Programming

natural language. Second is the reflexivity existing in a specific and formal
language, such as in mathematics or logic. As seen in these domains, the former
was developed mainly in the humanities, whereas the latter belongs more to
science and engineering. In these two major scholarly domains, there have
been similar considerations. This book addresses the theme of the reflexivity
of signs but attempts to bridge the two genres of natural and formal language
to situate reflexivity as the general property of signs and sign systems.

From the more specific viewpoint of semiotics in computing, in recent
decades, there has been evidence of a growing interest in semiotics on the
part of those concerned with computer science and on the part of those ap-
plying information technology to the domain of the humanities. The earliest
mention of this topic was a brief four-page article in Communications of the
ACM (Zemanek, 1966), which emphasized the importance of the semiotic
analysis of programming languages. Publication of an actual study analyzing
the computing domain, however, had to wait until publication of studies by
Andersen (1997) and Andersen, Holmqvist, and Jensen (1993, 2007). Their
work modeled computer signs within information technology in general.
Such work was important because it opened the domain of the semiotic
analysis of computing, and it has been continued further by authors such as
Liu (2000). Ever since then, this domain has progressed through papers in
Walter de Gruyter’s Semiotica and the Journal of Applied Semiotics, through
conference/workshop papers on Organizational Semiotics, and also through
Springer’s Journal of Minds and Machines, which takes a more philosophical
approach. Other related publications are those of Floridi (1999, 2004), which
provide wide-ranging discussion of philosophy as applied to the computing
domain. In terms of application, the most advanced domain in this area of
semiotics is human–computer interaction, the advances in which have been
elucidated in a book by de Souza (2006).

The appearance of all these titles and papers would seem to suggest a
growing interest in books relating to the technological application of the
humanities. Nevertheless, in this domain much more remains to be done in
exploring the relationship between computing and semiotics. This book is
specifically concerned with semiotics in relation to programming languages,
which represents an area of computing not yet covered in great detail by any
existing book on computational semiotics.

1.5 The Structure of This Book

The fundamentals of semiotics can be examined from three viewpoints: first,
through models of signs as an answer to the question of what signs are; second,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org


Introduction 7

through kinds of signs and the content that signs represent; and third, through
systems of signs constructed by those signs. Accordingly, the main part of this
book is organized into three corresponding parts. Part I starts by formalizing
models of signs through consideration of the correspondences between two
large trends in sign models. Since each trend incorporates the notion of kinds
of signs and entities, Part II considers these trends’ correspondences, based
on Part I, and how they appear in computer programs. Finally, Part III com-
pares and contrasts human and machine systems in terms of the foundations
established in Parts I and II.

This structure differs from studies on language in general, which are usually
organized according to the domains of syntax, semantics, and pragmatics. I
chose the organization described above because the approach of this book
arises from semiotics, which is situated at the most fundamental level of
language, even before considering elements of linguistic structure such as
syntax. The levels of syntax, semantics, and pragmatics do appear in the book
but are distributed throughout the various chapters at appropriate points,
when necessary. In this sense, the term language in this book does not signify
a language in the context of linguistics, that is, a system with morphology,
syntax, semantics, and pragmatics. The signification of language in this book
is in its most abstract form, referring to a kind of sign system in which the
signs are linguistic elements. In other words, I treat a language as a relation
among linguistic elements and their interpretations.

Additional guidance on the structure of this book is provided in Figure 3.8
in Section 3.5, which shows a map of the chapters, indicating which part of the
sign system is the focus of each chapter. This map appears after the definitions
of basic concepts and terms in Chapters 2 and 3.

As mentioned previously, this book follows an interdisciplinary approach
covering both semiotics and computer programming. Both domains require
a degree of expertise, and for this reason an introduction to each is needed.
An interdisciplinary book such as this one usually has several chapters of in-
troductory material followed by the main content. This book, however, does
not include such introductory chapters in either semiotics or computer pro-
gramming. Rather, introductory material is provided throughout as needed.

For semiotics, the reason for not providing introductory material at the
start is that I have not simply taken a theory established by just one semioti-
cian and applied it to computer programs. When I began writing this book,
semiotic theory was not sufficiently established to be straightforwardly ap-
plied in a complete form that could be introduced at the beginning of the
book. Application of semiotic theory to a well-formed corpus required dis-
mantling, reconsidering, and reconstituting the constituent theories. Most of

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org


8 Semiotics of Programming

the chapters in this book treat a semiotic problem that I find fundamental,
and the problem is analyzed and hypothetically solved by some adaptation
of semiotic theory through its application to computer programs. These hy-
pothetical conclusions currently apply, in the most rigorous sense, only to
computer programs. To show the potential of these conclusions, however,
they are also applied to the artwork at the beginning of each chapter, thus of-
fering an intuitive or metaphorical introduction to the hypothetical problem
explored in the chapter. Although I am no more than an amateur with regard
to the fine arts, these parts are included in the hopes of helping the reader
intuitively grasp the significance of each chapter and to make the book more
interesting.

In contrast, for programming languages, I refer only to theories and con-
cepts already extant within the computer programming domain and merely
utilize them for semiotic analysis: since a programming language is well-
formed and rigorous, the relevant theory is fundamentally clear. Where nec-
essary, introductions to a programming language and its related theoretical
material are made at certain points in the book to clarify the point of an argu-
ment. For example, the next chapter introduces two programs and explains
the purposes of the programs to an extent sufficient to fulfill the purpose
of the chapter, which is to define what I mean by computer signs. A more
substantial explanation of the underlying concepts of the two programming
languages introduced in the next chapter is given in Chapter 3, along with
a semiotic interpretation of these languages’ differences. This is by design
because this book considers various programming languages: each chapter
is based on specific programming languages that best highlight the point of
the argument. A thorough introduction to each language would itself require
an entirely separate book. Among numerous programming languages, the
two representative ones introduced here are Haskell (Chapters 3, 7, and 10)
and Java (Chapters 3, 5, and 6). Moreover, Chapter 4 is based on the lambda
calculus and other languages appear here and there throughout the book.
Since there are many good books about each of the languages appearing here,
readers interested in a more thorough understanding of these languages are
invited to refer to these additional sources.

Both semiotics and computer programming have their own technical terms;
these terms sometimes overlap, making the situation more complex. For
example, the term argument can mean the persuasive thrust of a discussion
in general, but in semiotics it often signifies a Peircian argument, whereas
in computer science it refers to a parameter given to a function. To clarify
such terminology, a glossary providing basic definitions, concepts, and the
reasoning behind certain of my lexical choices is included at the end of the

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org


Introduction 9

book, with separate term lists for both semiotics and programming. The usage
throughout the book follows the definitions given in the Glossary.

The notations used in this book are as follows. Executable program code
is shown in typewriter face, whereas mathematical notations, titles, em-
phases and important terms are in italics. Sample terms and phrases appear-
ing in the book are enclosed in single quotation marks, whereas inline quotes
taken from other references are enclosed in double quotation marks. Strings
appearing in programs are enclosed in double quotation marks, and paren-
theses within program code are sometimes added, even when unnecessary, to
explicitly indicate a program’s composition. Some references have detailed in-
formation, such as chapters, page numbers, and paragraphs, indicated within
square brackets. The format of this information differs according to the ref-
erence: for example, the format for Peirce (1931) is the composite of two
numbers, such as [2.345], where the first number indicates the volume and
the latter number gives the section number in the Collected Papers published
by the Harvard University Press. I do not explain how to read the refer-
ence format for every reference; interested readers can consult the referred
documents.

The individual chapters are based on my papers published in Walter de
Gruyter’s Semiotica, in the Journal of Applied Semiotics, and in the Journal of
Minds and Machines. Specifically, for Part I, the original basis of Chapter 3
appeared in Tanaka-Ishii (2006), that of Chapter 4 in Tanaka-Ishii and Ishii
(2008b), and that of Chapter 5 in Tanaka-Ishii and Ishii (2008a); for Part II,
Chapter 6 appeared in Tanaka-Ishii and Ishii (2007), Chapter 7 in Tanaka-
Ishii and Ishii (2006), and Chapter 8 in Tanaka-Ishii (2009); and for Part III,
Chapter 9 appeared in Tanaka-Ishii (2008) and Chapter 11 in Tanaka-Ishii
(2010). The content of these journal papers was modified for the purpose of
archiving and also elaborated to make the overall arguments consistent.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org


2

Computer Signs in Programs

2.1 Introduction

A programming (or computer) language is an artificial language designed
to control computers and machines. A text written in a programming lan-
guage is called a program, and machines are thus controlled using programs.
Programming languages follow strict rules on syntax and semantics, and a
programmer must follow these rules to generate a program with the expected
behavior. Once written, the program text is syntactically analyzed, optimized,
or compiled if necessary, depending on the language, and then it is executed,
or run, on machines.

Since the major theme of this book concerns signs, this chapter introduces
the nature of the computer signs employed in programs before embarking
upon the primary focus of the book in the next chapter. Recent programming
languages are highly developed and have many distinct features and func-
tions. A proper formal introduction to these programming languages would
therefore require a book for each language. Because this book considers dif-
ferent languages in parallel, a thorough introduction to these languages is
beyond the scope of the book. This chapter therefore limits the introduction
of programming languages to the extent that is necessary to proceed to the
main part of the book.

The introduction is briefly made through two comparable executable exam-
ple programs written in two different programming languages. From among
the substantial number of different programming languages, Haskell (Bird,
1998) and Java (Arnold et al., 2000) were chosen because these languages
represent two paradigms – a functional language and an object-oriented
language – that have interesting features from a semiotic viewpoint. These
two examples represent the essences of the languages needed for semiotic

10

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73627-5 - Semiotics of Programming
Kumiko Tanaka-Ishii
Excerpt
More information

http://www.cambridge.org/9780521736275
http://www.cambridge.org
http://www.cambridge.org

