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1 The Classical Field Equations

It is a remarkable aspect of the “unreasonable effectiveness of mathematics in the natural sci-
ences” (Wigner 1960) that a handful of equations are sufficient to describe mathematically
a vast number of physically disparate phenomena, at least at some level of approximation.
Key reasons are the isotropy and uniformity of space-time (at least locally), the atten-
dant conservation laws,1 and the useful range of applicability of linear approximations to
constitutive relations.

After a very much abbreviated survey of the principal properties of vector fields, we
present a summary of these fundamental equations and associated boundary conditions,
and then describe several physical contexts in which they arise. The initial chapters of a
book on any specific discipline give a far better derivation of the governing equations for that
discipline than space constraints permit here. Our purpose is, firstly, to remind the reader of
the meaning accorded to the various symbols in any specific application and of the physics
that they describe and, secondly, to show the similarity among different phenomena.

The final section of this chapter is a very simple-minded description of the method of
eigenfunction expansion systematically used in many of the applications treated in this book.
The starting point is an analogy with vectors and matrices in finite-dimensional spaces and
the approach is purposely very elementary; a “real” theory is to be found in Part III of the
book.

1.1 Vector fields

Throughout most of the book the symbol u is used to denote the unknown function.Although
mathematically unnecessary, a distinction is made between the time variable t and the space
variables denoted, in Cartesian coordinates, by x = (x, y, z); vectors are shown in bold
face.

The gradient ∇∇∇u of a scalar function u is a vector with Cartesian components

∇∇∇u =
(

∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
= ∂u

∂x
i + ∂u

∂y
j + ∂u

∂z
k, (1.1.1)

1 Noether’s theorem asserts that any differentiable symmetry of the action (i.e., the integral of the Lagrangian)
of a physical system has a corresponding conservation law (see e.g. Lanczos 1970, p. 401; Goldstein 1980, p.
588; Weinberg 1995, vol. 1, p. 307; Srednicki 2007, p. 133).
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4 The Classical Field Equations
�

in which i, j and k are the unit vectors in the x-, y- and z-directions respectively. Physi-
cally, (∇∇∇u) · dx represents the increment of u when its spatial argument is changed from
x = (x, y, z) to x + dx = (x + dx , y + dy , z + dz ). The same meaning is attached to
(∇∇∇u) · dx in any other coordinate system (ξ, η, ζ ) and, for this reason, the component of
the gradient in the ξ -direction, for example, is not necessarily given by ∂u/∂ξ ;2 the form
of the gradient in cylindrical and spherical coordinate systems is given in Tables 6.4 p. 148
and 7.3 p. 173, respectively.

The divergence of a vector A with Cartesian components (Ax, Ay, Az) is

∇∇∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
. (1.1.2)

The physical meaning of ∇∇∇ · A is made evident by the divergence theorem (pp. 400 and 592)
which implies that

(∇∇∇ · A)(x) = lim

V →0

1


V

∮
S

A · n dS , (1.1.3)

in which S is the boundary of a small volume 
V centered at x, n is the outwardly directed
unit normal and the limit is understood in the sense that all dimensions of 
V tend to zero
approximately at the same rate. Thus (
V )∇∇∇ · A represents the net flux of A out of the
elementary volume 
V .

A third important differential vector operator is the curl:

∇∇∇ × A =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣
=

(
∂Az

∂y
− ∂Ay

∂z

)
i +

(
∂Ax

∂z
− ∂Az

∂x

)
j +

(
∂Ay

∂x
− ∂Ax

∂y

)
k.

(1.1.4)
Similarly to (1.1.3), we can get some insight into the physical meaning of this quantity from
Stokes’s theorem (p. 401) which permits us to write

n · (∇∇∇ × A) = lim

S→0

1


S

∮
L

A · t d� . (1.1.5)

Here L is a small planar loop enclosing an area 
S which has a unit normal n; t is the unit
vector tangent to L oriented in the direction of the fingers of the right hand when the thumb
points along n; (
S)n · (∇∇∇ × A) represents therefore the circulation of A around the small
loop encircling the area 
S.

Just as in the case of the gradient, although the physical meaning associated with diver-
gence and curl is the same in all coordinate systems, the forms shown in (1.1.2) and (1.1.4)
are only valid in Cartesian coordinates because this is the only system in which the unit
vectors along the coordinate lines are constant. In a general orthogonal system {e1, e2, e3}
a vector field is represented as

A = A1(x)e1 + A2(x)e2 + A3(x)e3 =
3∑

k=1

Akek. (1.1.6)

2 ∂u/∂ξ is the component of the gradient in the ξ -direction only when dξ represents the actual distance between
the points having coordinates (ξ, η, ζ ) and (ξ + dξ , η, ζ ). Evidently, this cannot be the case, for example, if ξ

is an angular coordinate.
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5 1.1 Vector fields
�

Then, using the standard rules of vector calculus to express ∇∇∇ · [f V] and ∇∇∇ × [f V], we
would have

∇∇∇ · A =
3∑

k=1

[(∇∇∇Ak) · ek + Ak∇∇∇ · ek] , ∇∇∇ × A =
3∑

k=1

[(∇∇∇Ak) × ek + Ak∇∇∇ × ek] .

(1.1.7)
Expressions for the divergence and the curl of a vector field in cylindrical and spherical
coordinate systems are shown in Tables 6.4 p. 148 and 7.3 p. 173, respectively.

In the following a central role is played by the Laplace operator, or Laplacian,

∇2u = ∇∇∇ · (∇∇∇u) = ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
. (1.1.8)

While the form ∇∇∇ · (∇∇∇u) is valid in all coordinate systems, it follows from the previous
considerations that the last form is only valid in Cartesian coordinates; the form of this
operator in cylindrical and spherical coordinate systems is shown in Tables 6.4 p. 148
and 7.3 p. 173, respectively. For a vector field A, in Cartesian coordinates we have

∇2A = (∇2Ax)i + (∇2Ay)j + (∇2Az)k, (1.1.9)

but in a general coordinate system the Laplacian of a vector is defined using the relation

∇2A = ∇∇∇(∇∇∇ · A) − ∇∇∇ × ∇∇∇ × A, (1.1.10)

which is an identity in Cartesian coordinates and provides a consistent definition of ∇2A
in non-Cartesian coordinate systems.

Two standard vector identities are

∇∇∇ × (∇∇∇u) = 0, ∇∇∇ · (∇∇∇ × A) = 0. (1.1.11)

Furthermore, the following two implications are well known:

∇∇∇ × C = 0 ⇐⇒ C = ∇∇∇u, (1.1.12)

∇∇∇ · B = 0 ⇐⇒ B = ∇∇∇ × A. (1.1.13)

In (1.1.12) u is the scalar potential3 of the field C and, in (1.1.13), A is the vector potential
of the field B. Since the equation ∇∇∇ · B = 0 implies that only two of the three scalars that
constitute the field B are independent, the same must be true of A. Thus, (1.1.13) must
be insufficient to uniquely specify the vector potential and, indeed, there is the freedom to
add various subsidiary conditions to make A unique without affecting the physical field
B = ∇∇∇ × A. These conditions, examples of which will be found in §1.5, are known as
gauge conditions.

3 The relation (1.1.12) holds in a simply connected domain. In a multiply connected domain the local condition
∇∇∇ × C = 0 must be supplemented by the global requirement that the circulation of C around any closed path
vanish.
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6 The Classical Field Equations
�

For a general vector field V we have the Helmholtz or Hodge decomposition (see e.g.
Morse & Feshbach 1953, p. 53)

V = ∇∇∇u + ∇ × A, (1.1.14)

with ∇2u = ∇∇∇ · V. The two terms, ∇∇∇u and ∇ × A, are the longitudinal and transverse parts
of V.

The addition of the gradient of a scalar function to the vector potential A does not affect the
fields B or V and, because of this freedom, in some situations it is possible to assume without
loss of generality particularly convenient forms for the vector potential. For example, if the
problem is planar, one may take A = ∇∇∇ × (ψk) in which k is a constant vector orthogonal
to the plane and ψ a scalar function. With axial symmetry, one may take A = ∇∇∇ × (ψeφ)

in which eφ is a unit vector in the direction of the angle of rotation around the symmetry
axis. In other cases a useful representation can be given in the form (see e.g Chandrasekhar
1961, p. 622)

A = ∇∇∇ × (ψx) + ∇∇∇ × ∇∇∇ × (χx) , (1.1.15)

in which ψ and χ are the two defining scalar functions. The two terms in this expression are
the toroidal and poloidal components of A, respectively; it is evident that only the second
one possesses a radial component. We return to this decomposition in much greater detail
in §14.4 and show its usefulness in an example in §7.18.

1.2 The fundamental equations

This book deals with the practice (Part I) and theory (Parts II and III) of solution methods
of some fundamental equations which are the most important examples of the three funda-
mental groups of elliptic, hyperbolic and parabolic equations (see e.g. Courant & Hilbert
1953; Garabedian 1964; Renardy & Rogers 1993 and many others). Here we summarize
these equations but, first, we establish some terminology related to boundary and initial
conditions.

1.2.1 Boundary conditions

There is a standard terminology to refer to the types of space-time boundary conditions
(which would be initial or “final” conditions for the time variable) normally associated with
second-order equations:

• Dirichlet data: The function is prescribed (e.g. equal to 0) on the boundary;
• Neumann data: The normal gradient of the function is prescribed (e.g. equal to 0) on

the boundary. With this type of boundary condition, if only derivatives of the unknown
function appear in the governing equation, the solution cannot be unique as any function
differing by a constant from a solution of the problem is also a solution;

• Cauchy data: Both the function and its normal gradient are prescribed on the boundary;
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7 1.2 The fundamental equations
�

• Mixed data: A linear combination of the unknown function and its normal gradient is
prescribed on the boundary;

• Conditions may also be of one type (e.g., Dirichlet) on part of the boundary and of another
type (e.g. Neumann) on other parts. For example, Neumann conditions might be specified
on the finite part of the boundaries, and the Dirichlet-type condition u → 0 at infinity
may be added to make the solution unique.

The nature of the boundary conditions to be associated with each specific equation type is
quite important and is one aspect of the distinction between properly and improperly posed
problems. Although we do not deal with the general theory, we illustrate this point with an
example in §4.7.

1.2.2 Elliptic equations

Generally speaking, elliptic equations describe a situation of equilibrium established a long
time after the beginning of a process: all forces have equilibrated, all disturbances have
either damped out or propagated to infinity and so forth. The most fundamental equation of
this type is the Laplace equation

∇2u = 0. (1.2.1)

Functions satisfying this equation in some spatial region  are termed harmonic in . The
non-homogeneous form of this equation is known as the Poisson equation:4

−∇2u = f, (1.2.2)

in which the function f (x), representing distributed sources of the field u, is given.
Another equation of the same mathematical type which is frequently encountered is the

Helmholtz equation or reduced wave equation

∇2u + k2u = −f (x), (1.2.3)

in which both f and the (real or complex, positive or negative) parameter k2 are given. As
will be seen in several examples, when the parameter k2 is real and positive, there are some
very significant qualitative differences between the solutions of (1.2.1) or (1.2.2) and those
of (1.2.3).

It will be clear from the physical considerations described in the following sections that
the boundary conditions to be associated with these equations cannot be of the Cauchy
type. An attempt to prescribe such conditions would result in an ill-behaved and physically
unacceptable solution (see example in §4.7). Appropriate boundary conditions are of the
Dirichlet, Neumann, or mixed type.

There are important types of higher-order equations of the same mathematical type, chief
among them the biharmonic equation:

∇4u = ∇2
(
∇2u

)
= 0, (1.2.4)

4 A physical justification for the minus sign is that an integration by parts of −u∇2u causes the appearance of the
non-negative-definite quantity |∇∇∇u|2 which often has the physical meaning of an energy density.
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8 The Classical Field Equations
�

which is efficiently split into the Laplace–Poisson system (§7.7)

∇2v = 0, ∇2u = v. (1.2.5)

1.2.3 Hyperbolic equations

Hyperbolic equations generally describe propagation with a finite speed. The prototypical
equation of this type is the scalar wave equation

1

c2

∂2u

∂t2
− ∇2u = F(x, t), (1.2.6)

in which the constant c is the speed of propagation of the wave and F , representing dis-
tributed sources of the field associated with the wave, is given. By referring, for instance, to
a mechanical problem in which u might represent a displacement caused by the wave, it is
intuitively clear that, on the “time boundary” t = 0, conditions of the Cauchy type, namely

u(x, t = 0) = u0(x),
∂u

∂t

∣∣∣∣
t=0

= v(x), (1.2.7)

would be appropriate. On the spatial boundaries through which the wave enters the domain
of interest either Dirichlet, Neumann or mixed conditions can be applied.

Particularly simple solutions of the homogeneous wave equation have the form

u(x, t) = � (e · x − ct) , (1.2.8)

where e is a unit vector and � an arbitrary function admitting a (conventional or distribu-
tional) double derivative. It is evident that u as given by this formula has a constant value
on the planes e · x − ct = const., which justifies the denomination plane wave given to
solutions of this type. The normal to this family of planes is parallel to e and identifies the
direction of propagation. In one space dimension only two such waves are possible, one
propagating to the left and one to the right so that the most general solution of (1.2.7) has
the well-known d’Alembert form

u(x, t) = �+ (x − ct) + �− (x + ct) . (1.2.9)

In spaces of higher dimensionality a much greater variety of plane waves is possible and
any arbitrary superposition of them is also a solution of the equation (see John 1955).

When there is a steady boundary or volume source maintaining monochromatic waves,
i.e. waves of a single frequency ω/2π (ω being the angular frequency), and all transients
have died out, one expects the solution to have the form

u(x, t) = v(x) cos [ωt + ψ(x)] , (1.2.10)

i.e., to consist of monochromatic waves of the same frequency with a spatially modulated
amplitude v and phase ψ . It is convenient to express this functional form as u(x, t) =
w(x)e−iωt allowing w to be complex and tacitly agreeing to take the real part of the complex
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9 1.2 The fundamental equations
�

expression. When this functional form is substituted into (1.2.6) with F assumed to have
the form F(x, t) = f (x)e−iωt , w is found to satisfy

∇2w + ω2

c2
w = −f, (1.2.11)

i.e., the Helmholtz equation (1.2.3) with k2 = ω2/c2; in this context, k is the wave number,
equal to 2π divided by the wavelength of the monochromatic wave. The same association
between the wave and Helmholtz equations is encountered if (1.2.6) is solved by the Fourier
transform in the time variable.

If there is no agent to sustain waves and all those initially present have propagated away
from the region of interest, the solution of (1.2.6) becomes independent of time and the
equation reduces then to the Laplace (1.2.1) or Poisson (1.2.2) forms.

In some cases the effect of damping modifies (1.2.6) to the form

1

c2

∂2u

∂t2
+ 2a

c2

∂u

∂t
− ∇2u = F(x, t), (1.2.12)

with a ≥ 0, which is known as the telegrapher equation. An example is given in §1.5.
In electromagnetism and elasticity the propagating quantities are vectors rather than

scalars. In these cases it is preferable to write the wave equation using the expression
(1.1.10) for the Laplacian to put the equation in the coordinate-invariant form

1

c2

∂2A
∂t2

+ ∇∇∇ × ∇∇∇ × A = F, (1.2.13)

where it has been assumed that ∇∇∇ · A = 0 as often happens, or can be caused to happen
by means of a suitable gauge transformation. In this case, plane wave solutions of the
homogeneous equation have the form

A = (b × e) � (e · x − ct) , (1.2.14)

in which b is an arbitrary constant vector and � a function. When A is a vector potential,
the quantity with a physical meaning is ∇∇∇ × A = [b − (b · e)e]� ′, which is perpendicular
to e. These waves are therefore polarized in the direction perpendicular to the direction of
propagation and, for this reason, are termed transverse.

1.2.4 Parabolic equations

The prototypical parabolic equation is the diffusion equation

∂u

∂t
= D∇2u + f (x, t), (1.2.15)

in which the constant D, with dimensions of (length)2/time, is the diffusivity or diffusion
coefficient of the quantity u and f (x, t) is given. The introduction of a scaled time t∗ = Dt

with f∗ = f/D permits us to consider the equation with D = 1, which we will often do
without explicitly mentioning that a scaled time variable is being used. For these equations
initial conditions

u(x, t = 0) = u0(x) (1.2.16)
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10 The Classical Field Equations
�

are appropriate, together with Dirichlet, Neumann or mixed conditions on the spatial
boundaries.

For steady conditions the diffusion equation degenerates to the Laplace (1.2.1) or Poisson
(1.2.2) forms. If (1.2.15) is solved by a Fourier or Laplace transform in time, the transformed
function satisfies the Helmholtz equation (1.2.3) with k2 negative or complex (see §5.5).

In diffusion problems it is possible that the source f , rather than being prescribed a priori,
is a function of u describing, e.g., the disappearance of u due to a chemical reaction. When
this dependence is linear we have

∂u

∂t
= D∇2u − αu. (1.2.17)

If α = const. the simple substitution u = e−αtv brings the equation into the standard form
(1.2.15), written for v, with f = 0.

1.3 Diffusion

The most elementary balance relation states that the rate of change of the total amount of
some quantity distributed with a density U within a fixed volume V equals the net transport
through the boundary S of V plus the contribution of the sources q inside the volume:

d

dt

∫
V

U dV = −
∮

S

Q · n dS +
∫

V

q dV , (1.3.1)

in which Q is the flux of U and n the outward unit normal. By applying the divergence
theorem (p. 400), in view of the arbitrariness of the control volume V , the previous equation
implies that, almost everywhere in space,5

∂U

∂t
= −∇∇∇ · Q + q. (1.3.2)

In heat transfer (1.3.1) derives from the first principle of thermodynamics for an incom-
pressible medium: U is the enthalpy per unit volume, Q the heat flux and q the internal heat
generation rate per unit volume. If the medium has constant properties, U = ρcpT , with ρ

the density, cp the specific heat and T the temperature. The heat flux Q must depend on T in
such a way that it vanishes when T is spatially uniform. For an isotropic medium the sim-
plest functional form satisfying this condition is embodied in Fourier’s law of conduction:

Q = −k∇∇∇T , (1.3.3)

in which the thermal conductivity k must be positive for heat to flow away from the hotter
regions. A relation of this type may be seen as a truncated Taylor series expansion of a more

5 The qualification “almost everywhere” has the technical meaning “aside from a set of zero measure”; see p. 684.
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11 1.3 Diffusion
�

general constitutive relation. This is a typical mechanism through which the divergence of
a flux gives rise to the Laplacian operator. Upon substitution into (1.3.2) we have

∂T

∂t
= k

ρcp

∇2T + q

ρcp

, (1.3.4)

which has the form (1.2.15) with D = k/ρcp. Because of this derivation one often refers
to this latter equation as to the heat, or conduction, equation.

In steady conditions and in the absence of sources, (1.3.4) reduces to ∇2T = 0 so that the
temperature field is harmonic and

∮
n · ∇∇∇T dS = 0 from (1.1.3). The underlying physical

picture permits us to give a physically compelling justification of the maximum principle for
harmonic functions, according to which a harmonic function defined in a region  cannot
attain a local maximum or minimum inside  but only on the boundary (see p. 76). Indeed,
if T had e.g. a maximum at a certain point interior to , on a sufficiently small surface
surrounding this point heat would flow away so that n · ∇∇∇T would be negative everywhere
and the integral could not vanish.

Solution of the diffusion equation clearly requires that an initial temperature distribution
T (x, t = 0) be known. In physical terms, it is evident that the solution will be affected by
conditions at the spatial boundaries: the imposition of a prescribed temperature (Dirichlet
condition) or a prescribed heat flux (Neumann condition) will certainly affect the spatial
and temporal evolution of the temperature field. If the surface of the medium is in contact
with a moving fluid capable of removing heat at a rate h(T − T∞), where h is a heat transfer
coefficient and T∞ a constant ambient temperature, continuity of heat flux at the surface
results in

−kn · ∇∇∇T = h(T − T∞), (1.3.5)

which is a condition of the mixed type for the unknown u = T − T∞. A similar condition
is approximately valid if the surface of the medium exchanges radiant energy with its
surroundings. According to the Stefan–Boltzmann law, a surface emits radiant energy at a
rate εσT 4 per unit area, where ε is the surface emissivity and σ is the Stefan–Boltzmann
constant. The incident energy absorbed from the surroundings at temperature T∞ is ασT 4∞,
with α the surface absorptivity. From Kirchhoff’s law, α = ε and, therefore, continuity of
heat flux across the surface requires that

−kn · ∇∇∇T = εσ (T 4 − T 4∞) = εσ
T 4 − T 4∞
T − T∞

(T − T∞) 
 4εσT 3∞(T − T∞), (1.3.6)

provided the temperature difference is not too large. For this reason, the denomination
radiation condition is encountered in the heat transfer literature to denote conditions of the
mixed type.

Another physical process resulting in an equation of the type (1.3.1) is the diffusion
of a solute in a solvent. In this case we may take the mass density ρd of the diffusing
substance as the conserved quantity U in (1.3.1). The flux Q is given by Fick’s law of
diffusion as Q = −ρD ∇∇∇(ρd/ρ), in which ρ is the total mass density of the solute–solvent
mixture and D the mass diffusivity. When both these quantities are approximately constant
∇∇∇ · Q 
 −ρD∇2ρd and the standard form (1.2.15) is recovered. In this case the source term
f may represent the generation or disappearance of solute due e.g. to chemical reaction. If
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