
Chapter 1

The special theory of relativity

1.1 Historical background

1905 is often described as Einstein’s annus mirabilis: a wonderful year
in which he came up with three remarkable ideas. These were the Brow-
nian motion in fluids, the photoelectric effect and the special theory of
relativity. Each of these was of a basic nature and also had a wide impact
on physics. In this chapter we will be concerned with special relativity,
which was arguably the most fundamental of the above three ideas.

It is perhaps a remarkable circumstance that, ever since the initia-
tion of modern science with the works of Galileo, Kepler and Newton,
there has emerged a feeling towards the end of each century that the end
of physics is near: that is, most in-depth fundamental discoveries have
been made and only detailed ‘scratching at the surface’ remains. This
feeling emerged towards the end of the eighteenth century, when Newto-
nian laws of motion and gravitation, the studies in optics and acoustics,
etc. had provided explanations of most observed phenomena. The nine-
teenth century saw the development of thermodynamics, the growth in
understanding of electrodynamics, wave motion, etc., none of which had
been expected in the previous century. So the feeling again grew that
the end of physics was nigh. As we know, the twentieth century saw the
emergence of two theories, fundamental but totally unexpected by the
stalwarts of the nineteenth century, viz., relativity and quantum theory.
Finally, the success of the attempt to unify electromagnetism with the
weak interaction led many twentieth-century physicists to announce that
the end of physics was not far off. That hope has not materialized even
though the twenty-first century has begun.
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2 The special theory of relativity

While the above feeling of euphoria comes from the successes of
the existing paradigm, the real hope of progress lies in those phenomena
that seem anomalous, i.e., those that cannot be explained by the current
paradigm. We begin our account with the notion of ‘ether’ or ‘aether’
(the extra ‘a’ for distinguishing the substance from the commonly used
chemical fluid). Although Newton had (wrongly) resisted the notion
that light travels as a wave, during the nineteenth century the concept
of light travelling as a wave had become experimentally established
through such phenomena as interference, diffraction and polarization.
However, this understanding raised the next question: in what medium
do these waves travel? For, conditioned by the mechanistic thinking of
the Newtonian paradigm, physicists needed a medium whose distur-
bance would lead to the wave phenomenon. Water waves travel in water,
sound waves propagate in a fluid, elastic waves move through an elastic
substance ... so light waves also need a medium called aether in which to
travel.

The fact that light seemed to propagate through almost a vacuum
suggested that the proposed medium must be extremely ‘non-intrusive’
and so difficult to detect. Indeed, many unsuccessful attempts were
made to detect it. The most important such experiment was conducted
by Michelson and Morley.

1.2 The Michelson and Morley experiment

The basic idea behind the experiment conducted by A. A. Michelson
and E. Morley in 1887 can be understood by invoking the example of a
person rowing a boat in a river. Figure 1.1 shows a schematic diagram of
a river flowing from left to right with speed v. A boatman who can row
his boat at speed c in still water is trying to row along and across the river
in different directions. In Figure 1.1(a) he rows in the direction of the
current and finds that his net speed in that direction is c + v. Likewise
(see Figure 1.1(b)), when he rows in the opposite direction his net speed
is reduced to c − v. What is his speed when he rows across the river in
the perpendicular direction as shown in Figure 1.1(c)? Clearly he must
row in an oblique direction so that his velocity has a component v in a
direction opposite to the current. This will compensate for the flow of
the river. The remaining component

√
c2 − v2 will take him across the

river in a perpendicular direction as shown in Figure 1.1(c).
Suppose now that he does this experiment of rowing down the river

a distance d and back the same distance and then rows the same distance
perpendicular to the current and back. What is the difference of time τ

between the two round trips? The above details lead to the answer that
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1.2 The Michelson and Morley experiment 3
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Fig. 1.1. The three cases of a
boat being rowed in a river
with an intrinsic speed c, the
river flowing (from left to
right) with speed v: (a) in the
direction of the river flow,
(b) opposite to that direction
and (c) in a direction
perpendicular to the flow of
the river.

the time for the first trip exceeds that for the second by

τ = d

c − v
+ d

c + v
− 2d√

(c2 − v2)
(1.1)

and, for small current speeds (v � c), we get the answer as

τ ∼= d

c
× v2

c2
. (1.2)

The Michelson–Morley experiment [1] used the Michelson interfer-
ometer and is schematically described by Figure 1.2. Light from a source
S is made to pass through an inclined glass plate cum mirror P. The plate
is inclined at an angle of 45◦ to the light path. Part of the light from the
source passes through the transparent part of the plate and, travelling a
distance d1, falls on a plane mirror A, where it is reflected back. It then
passes on to plate P and, getting reflected by the mirror part, it moves
towards the viewing telescope. A second ray from the source first gets
reflected by the mirror part of the plate P and then, after travelling a
distance d2, gets reflected again at the second mirror B. From there it
passes through P and gets into the viewing telescope.

Now consider the apparatus set up so that the first path (length d1) is
in the E–W direction. In a stationary aether the surface of the Earth will
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4 The special theory of relativity
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Fig. 1.2. The schematic
arrangement of Michelson’s
interferometer, as described in
the text.

have a velocity approximately equal to its orbital velocity of 30 km/s.
Thus (v/c)2 is of the order of 10−8. In the actual experiment the apparatus
was turned by a right angle so that the E–W and N–S directions of the
arms were interchanged. So the calculation for the river-boat crossing
can be repeated for both cases and the two times added to give the
expected time difference as

τ ∼= d1 + d2

c
× v2

c2
. (1.3)

Although the effect expected looks very small, the actual sensitivity
of the instrument was very good and it was certainly capable of detecting
the effect if indeed it were present. The experiment was repeated several
times. In the case that the Earth was at rest relative to the aether at the
time of the experiment, six months later its velocity would be maximum
relative to the aether. But an experment performed six months later also
gave a null result.

The Michelson–Morley experiment generated a lot of discussion.
Did it imply that there was no medium like aether present after all?
Physicists not prepared to accept this radical conclusion came up with
novel ideas to explain the null result. The most popular of these was the
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1.3 The invariance of Maxwell’s equations 5

notion of contraction proposed by George Fitzgerald and later worked
on by Hendrik Lorentz. Their conclusion as summarized by J. Larmour
in a contemporary (pre-relativity) text on electromagnetic theory reads
as follows:

. . . if the internal forces of a material system arise wholly from

electromagnetic actions between the systems of electrons which constitute

the atoms, then the effect of imparting to a steady material system a

uniform velocity [v] of translation is to produce a uniform contraction of

the system in the direction of motion, of amount (1 − v2/c2) . . .

It is clear that a factor of this kind would resolve the problem posed
by the Michelson–Morley experiment. For, by reducing the length trav-
elled in the E–W direction by the above factor, we arrive at the same
time of travel for both directions and hence a null result. Lorentz went
further to give an elaborate physical theory to explain why the Fitzgerald
contraction takes place.

The Michelson–Morley experiment was explained much more ele-
gantly when Einstein proposed his special theory of relativity. We will
return to this point after decribing what ideas led Einstein to propose
the theory. As we will see, the Michelson–Morley experiment played no
role whatsoever in leading him to relativity.

1.3 The invariance of Maxwell’s equations

We now turn to Einstein’s own approach to relativity [2], which was moti-
vated by considerations of symmetry of the basic equations of physics,
in particular the electromagnetic theory. For he discovered a conflict
between Newtonian ideas of space and time and Maxwell’s equations,
which, since the mid 1860s, had been regarded as the fundamental equa-
tions of the electromagnetic theory. An elegant conclusion derived from
them was that the electromagnetic fields propagated in space with the
speed of light, which we shall henceforth denote by c. It was how this
fundamental speed should transform, when seen by two observers in
uniform relative motion, that led to the conceptual problems.

The Newtonian dynamics, with all its successes on the Earth and
in the Cosmos, relied on what is known as the Galilean transformation
of space and time as measured by two inertial observers. Let us clarify
this notion further. Let O and O′ be two inertial observers, i.e., two
observers on whom no force acts. By Newton’s first law of motion both
are travelling with uniform velocites in straight lines. Let the speed of
O′ relative to O be v. Without losing the essential physical information
we take parallel Cartesian axes centred at O and O′ with the X, X ′ axes
parallel to the direction of v. We also assume that the respective time
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6 The special theory of relativity

coordinates of the two observers were so set that t = t ′ = 0 when O and
O′ coincided.

Under these conditions the transformation law for spacetime vari-
ables for O and O′ is given by

t ′ = t, x ′ = x − vt, y′ = y, z′ = z. (1.4)

Since v is a constant, the frames of reference move uniformly relative
to each other. Laws of physics were expected to be invariant relative to
such frames of reference. For example, because of constancy of v, we
have equality of the accelerations ẍ and ẍ ′. Thus Newton’s second law of
motion is invariant under the Galilean transformation. Indeed, we may
state a general expectation that the basic laws of physics should turn out
to be invariant under the Galilean transformations. This may be called
the principle of relativity.

Paving the way to a mechanistic philosophy, Newtonian dynamics
nurtured the belief that the basic laws of physics will turn out to be
mechanics-based and as such the Galilean transformation would play a
key role in them. This belief seemed destined for a setback when applied
to Maxwell’s equations. Maxwell’s equations in Gaussian units and in
vacuum (with isolated charges and currents) may be written as follows:

∇ · B = 0; ∇ × E = −1

c

∂B

∂t
;

(1.5)

∇ · D = 4πρ; ∇ × H = 1

c

∂D

∂t
+ 4π

c
j.

Here the fields B, E, D and H have their usual meaning and ρ and
j are the charge and current density. We may set D = E and B = H in
this situation. Then we get by a simple manipulation, in the absence of
charges and currents,

∇ × ∇ × H ≡ ∇ ∇ · H − ∇2H

= 1

c

∂

∂t
∇ × E = − 1

c2

∂2H

∂t2
. (1.6)

From this we see that H satisfies the wave equation

�H = 0. (1.7)

Similarly E will also satisfy the wave equation, the operator � standing
for

� ≡ 1

c2

∂2

∂t2
− ∇2.
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1.3 The invariance of Maxwell’s equations 7

The conclusion drawn from this derivation is this: Maxwell’s equa-
tions imply that the E and H fields propagate as waves with the speed c.
Unless explicitly stated otherwise, we shall take c = 1.1

However, this innocent-looking conclusion leads to problems when
we compare the experiences of two typical inertial observers, having
a uniform relative velocity v. Suppose observer O sends out a wave
towards observer O′ receding from him at velocity v directed along
OO′. Our understanding of Newtonian kinematics will convince us that
O′ will see the wave coming towards him with velocity c − v. But then
we run foul of the principle of relativity: that the basic laws of physics
are invariant under Galilean transformations. So Maxwell’s equations
should have the same formal structure for O and O′, with the conclusion
that both these observers should see their respective vectors E and H
propagate across space with speed c.

This was the problem Einstein worried about and to exacerbate it he
took up the imaginary example of an observer travelling with the speed
of the wave. What would such an observer see?

Let us look at the equations from a Galilean standpoint first. The
Galilean transformation is given by

r′ = r − vt, t ′ = t. (1.8)

Although the general transformation above can be handled, we will
take its simplifed version in which O′ is moving away from O along the
x-axis and O and O′ coincided when t ′ = t = 0. It is easy to see that the
partial derivatives are related as follows:

∂

∂x
= ∂

∂x ′ ,
∂

∂y
= ∂

∂y′ ,
∂

∂z
= ∂

∂z′ ,
∂

∂t
= ∂

∂t ′ − v
∂

∂x ′ .

If we apply these transformation formulae to the wave equation
(1.7), we find that the form of the equation is changed to

(
∂

∂t ′ − v
∂

∂x ′

)2

H − ∇′2H = 0. (1.9)

Clearly Maxwell’s equations are not invariant with respect to
Galilean transformation. Indeed, if we want the equations to be invariant
for all inertial observers, then we need, for example, the speed of light
to be invariant for them, as seen from the above example of the wave
equation. Can we think of some other transformation that will guarantee
the above invariances?

In particular, let us ask this question: what is the simplest modifi-
cation we can make to the Galilean transformation in order to preserve

1 In this book, as a rule, we will choose units such that the speed of light is unity when

measured in them.
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8 The special theory of relativity

the form of the wave equation? We consider the answer to this question
for the situation of the two inertial observers O and O′ described above.
We try linear transformations between their respective space and time
coordinates (t, x, y, z) and (t ′, x ′, y′, z′) so as to get the desired answer.
So we begin with

t ′ = a00t + a01x, x ′ = a10t + a11x, y′ = y, z′ = z. (1.10)

With this transformation, it is not difficult to verify that the wave
operator � transforms as

� ≡
(

a00
∂

∂t ′ + a10
∂

∂x ′

)2

−
(

a01
∂

∂t ′ + a11
∂

∂x ′

)2

− ∂2

∂y′2 − ∂2

∂z′2 . (1.11)

A little algebra tells us that the right-hand side will reduce to the
wave operator in the primed coordinates, provided that

a2
00 − a2

01 = 1, a2
10 − a2

11 = −1, a11a01 = a10a00. (1.12)

Now, if we assume that the origin of the frame of reference of O′ is
moving with speed v with respect to the frame of O, then setting x ′ = 0
we get va11 = −a10. Then from (1.12) we get a01 = −va00. Finally we
get the solution to these equations as

a11 = γ, a10 = −vγ = a01, a00 = γ, (1.13)

where

γ = (1 − v2)−1/2. (1.14)

Thus the transformation that preserves the form of the wave equa-
tion is made up of the following relations between (t, x, y, z) and
(t ′, x ′, y′, z′), the coordinates of O and O′, respectively:

t ′ = γ (t − vx), x ′ = γ (x − vt), y′ = y, z′ = z. (1.15)

It is easy to invert these relations so as to express the unprimed
coordinates in terms of the primed ones. In that case we would find that
the relations look formally the same but with +v replacing −v:

t = γ (t ′ + vx ′), x = γ (x ′ + vt ′), y = y′, z = z′. (1.16)

Physically it means that, if O′ is moving with speed v relative to O,
then O is moving with speed −v relative to O′.

A more elaborate algebra will also show that the Maxwell equations
are also invariant under the above transformation.

Einstein arrived at this result while considering the hypothetical
observer travelling with the light wavefront. He found that such an
observer could not exist. (This can be seen in our example below by
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1.4 The origin of special relativity 9

letting v go to c = 1.) In the process he arrived at the above transfor-
mation. As we will shortly see, this transformation has echoes of the
work Lorentz had done in his attempts to explain the null result of the
Michelson–Morley experiment. We will refer to such transformations
by the name Lorentz transformations, the name given by Henri Poincaré
to honour Lorentz for his original ideas in this field.

We also see that the space coordinates and the time coordinate get
mixed up in a Lorentz transformation. Thus, for a family of inertial
observers moving with different relative velocities, we cannot compart-
mentalize space and time as separate units. Rather they together form a
four-dimensional structure, which we will henceforth call ‘spacetime’.

Example 1.3.1 Consider (1.15) with the following definition of θ :

v = c tanh θ.

Then trigonometry leads us to the following transformation laws:

t ′ = t cosh θ − x sinh θ, x ′ = x cosh θ − t sinh θ, y′ = y,

z′ = z.

Compare the first two relations with the rotation of Cartesian axes x, y in

two (space) dimensions:

x ′ = x cos θ − y sin θ, y′ = y cos θ + x sin θ.

We may therefore consider the Lorentz transformation as a rotation through

an imaginary angle iθ , if we define an imaginary time coordinate as T = it .

1.4 The origin of special relativity
Einstein thus found himself at a crossroads: the Newtonian mechanics
was invariant under the Galilean transformation, whereas Maxwell’s
equations were invariant under the Lorentz transformation. One could
try to modify the Maxwell equations and look for invariance of the
new equations under the Galilean transformation. Alternatively, one
could modify the Newtonian mechanics and make it invariant under the
Lorentz transformation. Einstein chose the latter course. We will now
highlight his development of the special theory of relativity.

We begin with the introduction of a special class of observers, the
inertial observers in whose rest frame Newton’s first law of motion holds.
That is, these observers are under no forces and so move relative to one
another with uniform velocities. Notice that there is no explicitly defined
frame that could be considered as providing a frame of ‘absolute rest’.
Thus all inertial observers have equal status and so do their frames,
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10 The special theory of relativity

which are the inertial frames. This is in contrast with the Newtonian
concept of absolute space, whose rest frame enjoyed a special status.
We will comment on it further in Chapter 18 when we discuss Mach’s
principle.

The principle of relativity states that all basic laws of physics are the
same for all inertial observers. Notice that this principle has not changed
from its Newtonian form; but the inertial observers are now linked by
Lorentz rather than Galilean transformations.

When applied to electricity and magnetism this principle tells us
that Maxwell’s equations are the same for all inertial observers: in par-
ticular, the speed of light c, which appears as the wave velocity in these
equations, must be the same in all inertial reference frames. We also see
that this requirement leads us to the Lorentz transformation. The trans-
formation described by the equations (1.15) is called a ‘special Lorentz
transformation’. It can be easily generalized to the case in which the
observer O′ moves with a constant velocity v in any arbitrary direction.
The relevant relations are

t ′ = γ [t − (v · r)], r′ = γ (r∗ − vt), (1.17)

where

r∗ = r/γ + (γ − 1)v(v · r)/γ v2. (1.18)

We next look at some of the observable effects of this transformation
on some measurements of events in space and time. For it is these effects
that tell us what the special theory of relativity is all about.

Example 1.4.1 Problem. Show that (1.17) reduces to (1.15) for a special

Lorentz transformation.

Solution. In the special Lorentz transformation, v is in the x-direction. So, if

e is a unit vector in that direction,

v · r = vx, r∗ = r
√

1 − v2 +
(

1√
1 − v2

− 1

)
v2x

1

γ v2
e,

where we have used (1.17) and (1.18). Thus t ′ = γ (t − vx), which is as per

(1.15). For the r′ relation, note that the y−y′ relation is y′ = y. Similarly we

have z′ = z. The x−x ′ relation is

x ′ = x + γ (γ − 1)v2x · 1

γ v2
− γ vt

= x(1 + γ − 1) − γ vt = γ (x − vt).

Thus we recover the special Lorentz transformation.
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