
PART I

Ordinary differential equations
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1
Euler’s method and beyond

1.1 Ordinary differential equations and the Lips-
chitz condition

We commence our exposition of the computational aspects of differential equations by
examining closely numerical methods for ordinary differential equations (ODEs). This
is important because of the central role of ODEs in a multitude of applications. Not
less crucial is the critical part that numerical ODEs play in the design and analysis of
computational methods for partial differential equations (PDEs). Thus, even if your
main interest is in solving PDEs, ideally you should first master computational ODEs,
not just to familiarize yourself with concepts, terminology and ideas but also because
(as we will see in what follows) many discretization methods for PDEs reduce the
underlying problem to the computation of ODEs.

Our goal is to approximate the solution of the problem

y′ = f(t,y), t ≥ t0, y(t0) = y0. (1.1)

Here f is a sufficiently well-behaved function that maps [t0,∞) × R
d to R

d and the
initial condition y0 ∈ R

d is a given vector; R
d denotes here – and elsewhere in this

book – the d-dimensional real Euclidean space.
The ‘niceness’ of f may span a whole range of desirable attributes. At the very

least, we insist on f obeying, in a given vector norm ‖ · ‖, the Lipschitz condition

‖f(t, x) − f(t,y)‖ ≤ λ‖x − y‖ for all x,y ∈ R
d, t ≥ t0. (1.2)

Here λ > 0 is a real constant that is independent of the choice of x and y – a
Lipschitz constant. Subject to (1.2), it is possible to prove that the ODE system (1.1)
possesses a unique solution.1 Taking a stronger requirement, we may stipulate that
f is an analytic function – in other words, that the Taylor series of f about every
(t,y0) ∈ [0,∞) × R

d has a positive radius of convergence. It is then possible to prove
that the solution y itself is analytic. Analyticity comes in handy, since much of our
investigation of numerical methods is based on Taylor expansions, but it is often an
excessive requirement and excludes many ODEs of practical importance.

In this volume we strive to steer a middle course between the complementary vices
of mathematical nitpicking and of hand-waving. We solemnly undertake to avoid any

1We refer the reader to the Appendix for a brief refresher course on norms, existence and unique-
ness theorems for ODEs and other useful odds and ends of mathematics.
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4 Euler’s method and beyond

needless mention of exotic function spaces that present the theory in its most general
form, whilst desisting from woolly and inexact statements. Thus, we always assume
that f is Lipschitz and, as necessary, may explicitly stipulate that it is analytic.
An intelligent reader could, if the need arose, easily weaken many of our ‘analytic’
statements so that they are applicable also to sufficiently-differentiable functions.

1.2 Euler’s method

Let us ponder briefly the meaning of the ODE (1.1). We possess two items of in-
formation: we know the value of y at a single point t = t0 and, given any function
value y ∈ R

d and time t ≥ t0, we can tell the slope from the differential equation.
The purpose of the exercise being to guess the value of y at a new point, the most
elementary approach is to use linear interpolation. In other words, we estimate y(t)
by making the approximation f(t,y(t)) ≈ f(t0,y(t0)) for t ∈ [t0, t0 + h], where h > 0
is sufficiently small. Integrating (1.1),

y(t) = y(t0) +
∫ t

t0

f(τ,y(τ)) dτ ≈ y0 + (t − t0)f(t0,y0). (1.3)

Given a sequence t0, t1 = t0 +h, t2 = t0 +2h, . . . , where h > 0 is the time step, we
denote by yn a numerical estimate of the exact solution y(tn), n = 0, 1, . . . Motivated
by (1.3), we choose

y1 = y0 + hf(t0,y0).

This procedure can be continued to produce approximants at t2, t3 and so on. In
general, we obtain the recursive scheme

yn+1 = yn + hf(tn,yn), n = 0, 1, . . . , (1.4)

the celebrated Euler method.
Euler’s method is not only the most elementary computational scheme for ODEs

and, simplicity notwithstanding, of enduring practical importance. It is also the cor-
nerstone of the numerical analysis of differential equations of evolution. In a deep
and profound sense, all the fancy multistep and Runge–Kutta schemes that we shall
discuss are nothing but a generalization of the basic paradigm (1.4).

� Graphic interpretation Euler’s method can be illustrated pictorially.
Consider, for example, the scalar logistic equation y ′ = y(1 − y), y(0) = 1

10 .
Fig. 1.1 displays the first few steps of Euler’s method, with a grotesquely large
step h = 1. For each step we show the exact solution with initial condition
y(tn) = yn in the vicinity of tn = nh (dotted line) and the linear interpolation
via Euler’s method (1.4) (solid line).
The initial condition being, by definition, exact, so is the slope at t0. However,
instead of following a curved trajectory the numerical solution is piecewise-
linear. Having reached t1, say, we have moved to a wrong trajectory (i.e.,
corresponding to a different initial condition). The slope at t1 is wrong – or,
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1.2 Euler’s method 5

rather, it is the correct slope of the wrong solution! Advancing further, we
might well stray even more from the original trajectory.
A realistic goal of numerical solution is not, however, to avoid errors alto-
gether; after all, we approximate since we do not know the exact solution in
the first place! An error-generating mechanism exists in every algorithm for
numerical ODEs and our purpose is to understand it and to ensure that, in a
given implementation, errors do not accumulate beyond a specified tolerance.
Remarkably, even the excessive step h = 1 leads in Fig. 1.1 to a relatively
modest local error. �
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Figure 1.1 Euler’s method, as applied to the equation y′ = y(1 − y) with initial
value y(0) = 1

10 .

Euler’s method can be easily extended to cater for variable steps. Thus, for a general
monotone sequence t0 < t1 < t2 < · · · we approximate as follows:

y(tn+1) ≈ yn+1 = yn + hnf(tn,yn),

where hn = tn+1 − tn, n = 0, 1, . . . However, for the time being we restrict ourselves
to constant steps.

How good is Euler’s method in approximating (1.1)? Before we even attempt to
answer this question, we need to formulate it with considerably more rigour. Thus,
suppose that we wish to compute a numerical solution of (1.1) in the compact interval
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6 Euler’s method and beyond

[t0, t0+t∗] with some time-stepping numerical method, not necessarily Euler’s scheme.
In other words, we cover the interval by an equidistant grid and employ the time-
stepping procedure to produce a numerical solution. Each grid is associated with a
different numerical sequence and the critical question is whether, as h → 0 and the
grid is being refined, the numerical solution tends to the exact solution of (1.1). More
formally, we express the dependence of the numerical solution upon the step size by
the notation yn = yn,h, n = 0, 1, . . . , �t∗/h�. A method is said to be convergent if, for
every ODE (1.1) with a Lipschitz function f and every t∗ > 0 it is true that

lim
h→0+

max
n=0,1,...,�t∗/h�

‖yn,h − y(tn)‖ = 0,

where �α� ∈ Z is the integer part of α ∈ R. Hence, convergence means that, for
every Lipschitz function, the numerical solution tends to the true solution as the grid
becomes increasingly fine.2

In the next few chapters we will mention several desirable attributes of numerical
methods for ODEs. It is crucial to understand that convergence is not just another
‘desirable’ property but, rather, a sine qua non of any numerical scheme. Unless it
converges, a numerical method is useless!

Theorem 1.1 Euler’s method (1.4) is convergent.

Proof We prove this theorem subject to the extra assumption that the function
f (and therefore also y) is analytic (it is enough, in fact, to stipulate the weaker
condition of continuous differentiability).

Given h > 0 and yn = yn,h, n = 0, 1, . . . , �t∗/h�, we let en,h = yn,h −y(tn) denote
the numerical error. Thus, we wish to prove that limh→0+ maxn ‖en,h‖ = 0.

By Taylor’s theorem and the differential equation (1.1),

y(tn+1) = y(tn) + hy′(tn) + O
(
h2) = y(tn) + hf(tn,y(tn)) + O

(
h2) , (1.5)

and, y being continuously differentiable, the O
(
h2

)
term can be bounded (in a given

norm) uniformly for all h > 0 and n ≤ �t∗/h� by a term of the form ch2, where c > 0
is a constant. We subtract (1.5) from (1.4), giving

en+1,h = en,h + h[f(tn,y(tn) + en,h) − f(tn,y(tn))] + O
(
h2) .

Thus, it follows by the triangle inequality from the Lipschitz condition and the afore-
mentioned bound on the O

(
h2

)
reminder term that

‖en+1,h‖ ≤ ‖en,h‖ + h‖f(tn,y(tn) + en,h) − f(tn,y(tn))‖ + ch2

≤ (1 + hλ)‖en,h‖ + ch2, n = 0, 1, . . . , �t∗/h� − 1. (1.6)

We now claim that

‖en,h‖ ≤ c

λ
h [(1 + hλ)n − 1] , n = 0, 1, . . . (1.7)

2We have just introduced a norm through the back door: cf. appendix subsection A.1.3.3 for
an exact definition. This, however, should cause no worry, since all norms are equivalent in finite-
dimensional spaces. In other words, if a method is convergent in one norm, it converges in all . . .
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1.2 Euler’s method 7

The proof is by induction on n. When n = 0 we need to prove that ‖e0,h‖ ≤ 0 and
hence that e0,h = 0. This is certainly true, since at t0 the numerical solution matches
the initial condition and the error is zero.

For general n ≥ 0 we assume that (1.7) is true up to n and use (1.6) to argue that

‖en+1,h‖ ≤ (1 + hλ)
c

λ
h [(1 + hλ)n − 1] + ch2 =

c

λ
h

[
(1 + hλ)n+1 − 1

]
.

This advances the inductive argument from n to n+1 and proves that (1.7) is true. The
constant hλ is positive, therefore 1 + hλ < ehλ and we deduce that (1 + hλ)n < enhλ.
The index n is allowed to range in {0, 1, . . . , �t∗/h�}, hence (1 + hλ)n < e�t∗/h�hλ ≤
et∗λ. Substituting into (1.7), we obtain the inequality

‖en,h‖ ≤ c

λ
(et∗λ − 1)h, n = 0, 1, . . . , �t∗/h�.

Since c(et∗λ − 1)/λ is independent of h, it follows that

lim
h→0

0≤nh≤t∗

‖en,h‖ = 0.

In other words, Euler’s method is convergent.

� Health warning At first sight, it might appear that there is more to the
last theorem than meets the eye – not just a proof of convergence but also
an upper bound on the error. In principle this is perfectly true: the error
of Euler’s method is indeed always bounded by hcet∗λ/λ. Moreover, with
very little effort it is possible to demonstrate, e.g. by using the Peano kernel
theorem (A.2.2.6), that a reasonable choice is c = maxt∈[t0,t0+t∗] ‖y′′(t)‖. The
problem with this bound is that, unfortunately, in an overwhelming majority
of practical cases it is too large by many orders of magnitude. It falls into the
broad category of statements like ‘the distance between London and New York
is less than 47 light years’ which, although manifestly true, fail to contribute
significantly to the sum total of human knowledge.
The problem is not with the proof per se but with the insensitivity of a
Lipschitz constant. A trivial example is the scalar linear equation y′ = −100y,
y(0) = 1. Therefore λ = 100 and, since y(t) = e−100t, c = λ2. We thus derive
the upper bound of 100h(e100t∗ − 1). Letting t∗ = 1, say, we have

|yn − y(nh)| ≤ 2.69 × 1045h. (1.8)

It is easy, however, to show that yn = (1 − 100h)n, hence to derive the exact
expression

|yn − y(nh)| =
∣∣(1 − 100h)n − e−100nh

∣∣
which is smaller by many orders of magnitude than (1.8) (note that, unless
nh is very small, to all intents and purposes e−100nh ≈ 0).
The moral of our discussion is simple. The bound from the proof of Theorem
1.1 must not be used in practical estimations of numerical error! �
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8 Euler’s method and beyond

Euler’s method can be rewritten in the form yn+1 − [yn + hf(tn,yn)] = 0. Replacing
yk by the exact solution y(tk), k = n, n + 1, and expanding the first few terms of the
Taylor series about t = t0 + nh, we obtain

y(tn+1) − [y(tn) + hf(tn,y(tn))]
=

[
y(tn) + hy′(tn) + O

(
h2)] − [y(tn) + hy′(tn)] = O

(
h2) .

We say that the Euler’s method (1.4) is of order 1. In general, given an arbitrary
time-stepping method

yn+1 = Yn(f , h, y0,y1, . . . ,yn), n = 0, 1, . . . ,

for the ODE (1.1), we say that it is of order p if

y(tn+1) − Yn(f , h, y(t0),y(t1), . . . ,y(tn)) = O
(
hp+1)

for every analytic f and n = 0, 1, . . . Alternatively, a method is of order p if it recovers
exactly every polynomial solution of degree p or less.

The order of a numerical method provides us with information about its local
behaviour – advancing from tn to tn+1, where h > 0 is sufficiently small, we are
incurring an error of O

(
hp+1

)
. Our main interest, however, is in not the local but

the global behaviour of the method: how well is it doing in a fixed bounded interval
of integration as h → 0? Does it converge to the true solution? How fast? Since
the local error decays as O

(
hp+1

)
, the number of steps increases as O

(
h−1

)
. The

naive expectation is that the global error decreases as O(hp), but – as we will see
in Chapter 2 – it cannot be taken for granted for each and every numerical method
without an additional condition. As far as Euler’s method is concerned, Theorem 1.1
demonstrates that all is well and that the error indeed decays as O(h).

1.3 The trapezoidal rule

Euler’s method approximates the derivative by a constant in [tn, tn+1], namely by its
value at tn (again, we denote tk = t0 + kh, k = 0, 1, . . .). Clearly, the ‘cantilever-
ing’ approximation is not very good and it makes more sense to make the constant
approximation of the derivative equal to the average of its values at the endpoints.
Bearing in mind that derivatives are given by the differential equation, we thus obtain
an expression similar to (1.3):

y(t) = y(tn) +
∫ t

tn

f(τ,y(τ)) dτ

≈ y(tn) + 1
2 (t − tn)[f(tn,y(tn)) + f(t,y(t))].

This is the motivation behind the trapezoidal rule

yn+1 = yn + 1
2h[f(tn,yn) + f(tn+1,yn+1)]. (1.9)
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1.3 The trapezoidal rule 9

To obtain the order of (1.9), we substitute the exact solution,

y(tn+1) −
{
y(tn) + 1

2h[f(tn,y(tn)) + f(tn+1,y(tn+1))]
}

=
[
y(tn) + hy′(tn) + 1

2h2y′′(tn) + O
(
h3)]

−
(
y(tn) + 1

2h
{
y′(tn) +

[
y′(tn) + hy′′(tn) + O

(
h2)]})

= O
(
h3) .

Therefore the trapezoidal rule is of order 2.
Being forewarned of the shortcomings of local analysis, we should not jump to

conclusions. Before we infer that the error decays globally as O
(
h2

)
, we must first

prove that the method is convergent. Fortunately, this can be accomplished by a
straightforward generalization of the method of proof of Theorem 1.1.

Theorem 1.2 The trapezoidal rule (1.9) is convergent.

Proof Subtracting

y(tn+1) = y(tn) + 1
2h [f(tn,y(tn)) + f(tn+1,y(tn+1))] + O

(
h3)

from (1.9), we obtain

en+1,h = en,h + 1
2h {[f(tn,yn) − f(tn,y(tn))]

+
[
f(tn+1,yn+1) − f(tn+1,y(tn+1))

]}
+ O

(
h3) .

For analytic f we may bound the O
(
h3

)
term by ch3 for some c > 0, and this

upper bound is valid uniformly throughout [t0, t0 + t∗]. Therefore, it follows from the
Lipschitz condition (1.2) and the triangle inequality that

‖en+1,h‖ ≤ ‖en,h‖ + 1
2hλ {‖en,h‖ + ‖en+1,h‖} + ch3.

Since we are ultimately interested in letting h → 0 there is no harm in assuming that
hλ < 2, and we can thus deduce that

‖en+1,h‖ ≤
(

1 + 1
2hλ

1 − 1
2hλ

)
‖en,h‖ +

(
c

1 − 1
2hλ

)
h3. (1.10)

Our next step closely parallels the derivation of inequality (1.7). We thus argue that

‖en,h‖ ≤ c

λ

[(
1 + 1

2hλ

1 − 1
2hλ

)n

− 1

]
h2. (1.11)

This follows by induction on n from (1.10) and is left as an exercise to the reader.
Since 0 < hλ < 2, it is true that

1 + 1
2hλ

1 − 1
2hλ

= 1 +
hλ

1 − 1
2hλ

≤
∞∑

�=0

1
�!

(
hλ

1 − 1
2hλ

)�

= exp
(

hλ

1 − 1
2hλ

)
.

Consequently, (1.11) yields

‖en,h‖ ≤ ch2

λ

(
1 + 1

2hλ

1 − 1
2hλ

)n

≤ ch2

λ
exp

(
nhλ

1 − 1
2hλ

)
.
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10 Euler’s method and beyond

This bound is true for every nonnegative integer n such that nh ≤ t∗. Therefore

‖en,h‖ ≤ ch2

λ
exp

(
t∗λ

1 − 1
2hλ

)

and we deduce that
lim
h→0

0≤nh≤t∗

‖en,h‖ = 0.

In other words, the trapezoidal rule converges.

The number ch2 exp[t∗λ/(1 − 1
2hλ)]/λ is, again, of absolutely no use in practical

error bounds. However, a significant difference from Theorem 1.1 is that for the
trapezoidal rule the error decays globally as O

(
h2

)
. This is to be expected from a

second-order method if its convergence has been established.
Another difference between the trapezoidal rule and Euler’s method is of an entirely

different character. Whereas Euler’s method (1.4) can be executed explicitly – knowing
yn we can produce yn+1 by computing a value of f and making a few arithmetic
operations – this is not the case with (1.9). The vector v = yn + 1

2hf(tn,yn) can be
evaluated from known data, but that leaves us in each step with the task of finding
yn+1 as the solution of the system of algebraic equations

yn+1 − 1
2hf(tn+1,yn+1) = v.

The trapezoidal rule is thus said to be implicit , to distinguish it from the explicit
Euler’s method and its ilk.

Solving nonlinear equations is hardly a mission impossible, but we cannot take it
for granted either. Only in texts on pure mathematics are we allowed to wave a magic
wand, exclaim ‘let yn+1 be a solution of . . . ’ and assume that all our problems are
over. As soon as we come to deal with actual computation, we had better specify how
we plan (or our computer plans) to undertake the task of evaluating yn+1. This will
be a theme of Chapter 7, which deals with the implementation of ODE methods. It
suffices to state now that the cost of numerically solving nonlinear equations does not
rule out the trapezoidal rule (and other implicit methods) as viable computational
instruments. Implicitness is just one attribute of a numerical method and we must
weigh it alongside other features.

� A ‘good’ example Figure 1.2 displays the (natural) logarithm of the error
in the numerical solution of the scalar linear equation y′ = −y + 2e−t cos 2t,
y(0) = 0 for (in descending order) h = 1

2 , h = 1
10 and h = 1

50 .
How well does the plot illustrate our main distinction between Euler’s method
and the trapezoidal rule, namely faster decay of the error for the latter? As
often in life, information is somewhat obscured by extraneous ‘noise’; in the
present case the error oscillates. This can be easily explained by the periodic
component of the exact solution y(t) = e−t sin 2t. Another observation is that,
for both Euler’s method and the trapezoidal rule, the error, twists and turns
notwithstanding, does decay. This, on the face of it, can be explained by the
decay of the exact solution but is an important piece of news nonetheless.
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1.3 The trapezoidal rule 11
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Figure 1.2 Euler’s method and the trapezoidal rule, as applied to y′ =
−y+2e−t cos 2t, y(0) = 0. The logarithm of the error, ln |yn −y(tn)|, is displayed for

h = 1
2 (solid line), h = 1

10 (broken line) and h = 1
50 (broken-and-dotted line).

Our most pessimistic assumption is that errors might accumulate from step
to step but, as can be seen from this example, this prophecy of doom is often
misplaced. This is a highly nontrivial point, which will be debated at greater
length throughout Chapter 4.
Factoring out oscillations and decay, we observe that errors indeed decrease
with h. More careful examination verifies that they increase at roughly the
rate predicted by order considerations. Specifically, for a convergent method
of order p we have ‖e‖ ≈ chp, hence ln ‖e‖ ≈ ln c+p lnh. Denoting by e(1) and
e(2) the errors corresponding to step sizes h(1) and h(2) respectively, it follows
that ln ‖e(2)‖ ≈ ln ‖e(1)‖ − p ln(h(2)/h(1)). The ratio of consecutive step sizes
in Fig. 1.2 being five, we expect the error to decay by (at least) a constant
multiple of ln 5 ≈ 1.6094 and 2 ln 5 ≈ 3.2189 for Euler and the trapezoidal
rule respectively. The actual error decays if anything slightly faster than this. �

� A ‘bad’ example Theorems 1.1 and 1.2 and, indeed, the whole numerical
ODE theory, rest upon the assumption that (1.1) satisfies the Lipschitz con-
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