Professional English in Use

Engineering

Technical English for Professionals

Mark Ibbotson
Contents

INTRODUCTION

DESIGN

1. **Drawings**
 - A. Drawing types and scales
 - B. Types of views used on drawings

2. **Design development**
 - A. Initial design phase
 - B. Collaborative development

3. **Design solutions**
 - A. Design objectives
 - B. Design calculations

MEASUREMENT

4. **Horizontal and vertical measurements**
 - A. Linear dimensions
 - B. Level and plumb

5. **Locating and setting out**
 - A. Centrelines and offsets
 - B. Grids

6. **Dimensions of circles**
 - A. Key dimensions of circles
 - B. Pipe dimensions

7. **Dimensional accuracy**
 - A. Precision and tolerance
 - B. Fit

8. **Numbers and calculations**
 - A. Decimals and fractions
 - B. Addition, subtraction, multiplication and division

9. **Area, size and mass**
 - A. Area
 - B. Weight, mass, volume and density

10. **Measurable parameters**
 - A. Supply, demand and capacity
 - B. Input, output and efficiency

MATERIALS TECHNOLOGY

11. **Material types**
 - A. Metals and non-metals
 - B. Elements, compounds and mixtures
 - C. Composite materials

12. **Steel**
 - A. Carbon steels
 - B. Alloy steels
 - C. Corrosion

13. **Non-ferrous metals**
 - A. Common non-ferrous engineering metals
 - B. Plating with non-ferrous metals

14. **Polymers**
 - A. Natural and synthetic polymers
 - B. Thermoplastics and thermosetting plastics

15. **Minerals and ceramics**
 - A. Mineral and ceramic engineering materials
 - B. Glass

16. **Concrete**
 - A. Concrete mix design
 - B. Reinforced concrete

17. **Wood**
 - A. Categories of wood
 - B. Solid structural timber
 - C. Engineered wood

18. **Material properties 1**
 - A. Tensile strength and deformation
 - B. Elasticity and plasticity
 - C. Stages in elastic and plastic deformation

19. **Material properties 2**
 - A. Hardness
 - B. Fatigue, fracture toughness and creep
 - C. Basic thermal properties
20 Forming, working and heat-treating metal
A Casting, sintering and extruding metal
B Working metal
C Heat-treating metal

21 Material formats
A Raw materials for processing
B Formats of processed materials

22 3D component features
A 3D forms of edges and joints
B 3D forms of holes and fasteners

23 Machining 1
A Machining and CNC
B Machining with cutting tools

24 Machining 2
A Guillotining and punching
B High-temperature metal cutting techniques
C Laser cutting and UHP waterjets

25 Interconnection
A Attaching and supporting
B Fitting together

26 Mechanical fasteners 1
A Bolts
B Preload in bolted joints
C Washers

27 Mechanical fasteners 2
A Screws
B Screw anchors
C Rivets

28 Non-mechanical joints 1
A Welding
B Common gas and arc welding techniques

29 Non-mechanical joints 2
A Specialized welding techniques
B Brazing and soldering
C Adhesives

30 Load, stress and strain
A Load
B Stress and strain

31 Force, deformation and failure
A Types of force and deformation
B Types of failure

32 Structural mechanics
A Statically determinate structures
B Resultant forces and centre of gravity
C Frames and trusses

33 Motion and simple machines
A Acceleration and motion
B Inertia
C Simple machines

34 Moving parts
A Angular motion
B Rotary and reciprocating motion
C Engine revs
D Friction

35 Energy
A Forms of energy
B Energy efficiency
C Work and power

36 Heat and temperature
A Changes of temperature and state
B Heat transfer

37 Fluid containment
A Pipes, ducts and hoses
B Tanks
C Pumps, fans and turbines

38 Fluid pressure
A Gauge pressure and absolute pressure
B Hydrostatic pressure and siphonic action
Appendix I	Three-dimensional drawings 98
Appendix II	Shapes 99
Appendix III	Units of measurement 100
Appendix IV	Chemical elements 104
Appendix V	Structural elements and types of load 106
Appendix VI	Moments 108
Appendix VII	Vapour, cooling and thermal inertia 109
Appendix VIII	The electromagnetic spectrum 110
Appendix IX	Pipe and hose fittings and valves 111
Appendix X	Siphonic action 112
Appendix XI	Managing rotary motion 113
Appendix XII	Electrical and electronic components 114
Appendix XIII	Sensing, measuring and regulating devices 118
Answer key	119
Index	130
Acknowledgements	143
Introduction

Who is this book for?

Professional English in Use Engineering presents around 1,500 of the most important technical words and phrases in English that engineers and engineering technicians need for their work. The vocabulary has been carefully chosen to include:

- **terms that are essential in all fields of engineering** – for example, all engineers need to discuss dimensions and tolerances, know the names of common materials, and describe how components are fitted and fixed together
- **language for discussing and applying key engineering concepts** – for example, stress and strain, work and power, and fluid dynamics
- **more specific language for mechanical, electrical and civil/structural engineering.**

This book is for **professional engineers** who are already familiar with engineering concepts and for **students of engineering**. Language teachers who teach technical English will also find the explanations helpful. The level of English used is **intermediate to upper-intermediate** (Levels B1 to B2 in the Common European Framework).

You can use the book on your own for self-study, or with a teacher in the classroom, one-to-one or in groups.

Professional English in Use Engineering is part of the [Professional English in Use series](http://www.cambridge.org/elt) from Cambridge University Press. More information on this series is available at www.cambridge.org/elt

How is the book organized?

The book has 45 units which are grouped into nine themes. Each theme covers an important area of engineering such as **Materials technology**, **Static and dynamic principles** and **Mechanisms**. Each unit has two pages. The left-hand page explains key words and phrases and shows you how they are used in context. The right-hand page has exercises which allow you to practise the new language and improve your understanding of how it is used. The **Over to you** activities at the end of each unit (see opposite) are discussion and/or writing activities.

There are 13 **appendices** which provide the professional and student engineer with a reference of English terms used in key engineering activities. For example, language for describing three-dimensional drawings and shapes, the names for the chemical elements and terms for sensing, measuring and regulating devices.

The **answer key** at the back of the book contains answers to all the exercises on the right-hand pages. Most of the exercises have questions with only one correct answer.

The **index** lists all the key words and expressions presented in the book, together with the numbers of the units in which they are presented. It also shows how the terms are pronounced.

The **left-hand page**

This page presents the key words and phrases for each topic in **bold**. Key vocabulary is introduced using short texts, scripts, diagrams and tables. Many vocabulary items are illustrated. Each unit is divided into sections (usually A and B) and each section has a specific title.

Some sections include **notes** on the key language – for example, explanations of words that have different meanings in technical English and in everyday English, and references to other units where related topics or words are covered in more detail.
The right-hand page
The exercises on the right-hand page allow you to check your understanding of the words and expressions presented on the left-hand page, and to practise using them. There is a wide range of different types of exercise: for example, short texts, gap fills, matching exercises, crosswords and notes to complete.

‘Over to you’ sections
An important feature of Professional English in Use Engineering is the Over to you section at the end of each unit. These sections give you the opportunity to use the words and expressions you have just learned, and to relate them to your own work or studies.

How to use the book for self-study
You can work through the book unit by unit, or use the contents page at the front of the book to choose specific units that are relevant to you.
Read the texts on the left-hand page and concentrate on the key words and phrases in bold. If you find technical terms that are not in bold, look at the index to see if they are explained in another unit. You can also look at the index to help you learn how to pronounce new words. Do the exercises on the right-hand page, then check your answers in the key. If you have made mistakes, go back to the left-hand page and read the texts again. Do the Over to you section. Try to use as many new words as possible. It is best to discuss your ideas out loud and to record yourself if you can.

How to use the book in a classroom
Teachers can use Professional English in Use Engineering to provide a framework for an ‘English for Engineering’ course.
The illustrations can often be used as a warm-up activity or as a talking point during the lesson. Sometimes, the left-hand page may be used as the basis for a presentation, by either the teacher or the learners. Learners can do the exercises individually or in small groups. They can then compare answers with other groups or in a whole-class feedback session. The Over to you sections can be used as a starting point for role plays, discussions and presentation activities, or adapted to out-of-class projects.
This book is also a perfect complement to Cambridge English for Engineering which focuses on communication skills for engineers. More information on this title is available at www.cambridge.org/elt/englishforengineering