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Decision

Statistics, the most important science in the whole world: for upon it
depends the practical application of every other science and of every art.

(Florence Nightingale)

If your experiment needs statistics, you ought to have done a better
experiment.

(Ernest Rutherford)

Science is about decision. Building instruments, collecting data, reducing data,
compiling catalogues, classifying, doing theory – all of these are tools, tech-
niques or aspects which are necessary. But we are not doing science unless
we are deciding something; only decision counts. Is this hypothesis or theory
correct? If not, why not? Are these data self-consistent or consistent with other
data? Adequate to answer the question posed? What further experiments do
they suggest?

We decide by comparing. We compare by describing properties of an object
or sample, because lists of numbers or images do not present us with immediate
results enabling us to decide anything. Is the faint smudge on an image a star
or a galaxy? We characterize its shape, crudely perhaps, by a property, say the
full-width half-maximum, the FWHM, which we compare with the FWHM
of the point-spread function. We have represented a data set, the image of the
object, by a statistic, and in so doing we reach a decision.

Statistics are there for decision and because we know a background against
which to take a decision. To this end, every measurement we make, and every
parameter or value we derive requires an error estimate, a measure of range
(expressed in terms of probability) that encompasses our belief of the true value
of the parameter. We are taught this by our masters in the course of interminable
undergrad lab experiments. Why? It is because no measured quantity or property
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2 Decision

is of the slightest use in decision and therefore in science, unless it has a ‘range
quantity’ attached to it.

A statistic is a quantity that summarizes data; it is the ultimate data-reduction.
It is a property of the data and nothing else. It may be a number, a mean for
example, but it does not have to be. It is a basis for using the data or experimental
result to make a decision. We need to know how to treat data with a view to
decision, to obtain the right statistics to use in drawing statistical inference. (It
is the latter which is the branch of science; at times the term statistics is loosely
used to describe both the descriptive values and the science.)

The opening quotes indicate a mixed press. Nightingale was a pioneer of
applied statistics and graphical presentation. Her message is clear, but suggests
the age-old confusion between statistics and data. Rutherford’s message also
appears clear and uncompromising, but it can only hold in some specialized
circumstances. For a start, astronomers are not always free to do better experi-
ments. The laboratory is the big stage; the Universe is an experiment we cannot
re-run. Attempting to understand astrophysics and cosmology from one freeze-
frame in the spacetime continuum requires some reconsideration of the classical
scientific method. This scientific method of repetition of experimentally repro-
duced results does not apply. Thus, the first issue for astronomers: we cannot
always re-roll the dice, and anyway, repetition implies similar conditions. We
are never at the same spacetime coordinates.

There is thus need for a certain rigour in our methodology. The inability to
re-roll dice has led and still leads astronomers into some of the greatest errors
of inference. It becomes tempting to the point of irresistibility to use the data
on which a hypothesis was proposed to verify that hypothesis.

Example The Black Cloud (Hoyle, 1958). The Black Cloud appears to be
heading for the Earth. The scientific team suggests that this proves the cloud
has intelligence. Not so, says the dissenting team member. Why? A golf ball
lands on a golf course which contains 107 blades of grass; it stops on one
blade; the chances are 1 in 107 of this event occurring by chance. This is not
so amazing – the ball had to land somewhere. It would only be amazing if
the experiment were re-run to test the newly formulated hypothesis (e.g. the
blade being of special attractive character; the golfer of unusual skill) and the
event was repeated. However, the importance of deciding if the Black Cloud
knew about the Earth cannot await the next event or the sequence of events,
and tempts the rush to judgement in which initial data, hypothesis and test
data are combined; so in many instances in astronomy and cosmology.
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Decision 3

The most obvious area in which this offence is committed is in claims
of physical association of objects of small angular separation on the sky;
or similarly, claims of alignment of objects in close proximity on the sky.
Most such claims are bogus because they use the object grouping in which
the association or the alignment was originally noted in subsequent tests of
significance. The original data may be used to formulate a hypothesis only;
testing must await examination of fresh and unbiased data which do not include
the original data. It is essential to divorce hypothesis–formulation data from
hypothesis–test data. There is no set of tests which can cope with a-posteriori
statistics, or will ever be able to do so.

A second difference for astronomers stems from the first – the remoteness of
our objects and the inability to re-run our experiments precisely means that we
do not necessarily know the underlying distributions of the variables measured.
The essence of classical statistical analysis is (i) the formulation of hypothesis,
(ii) the gathering of hypothesis–test data via experiment, and (iii) the construc-
tion of a test-statistic. But making a decision on the basis of the test-statistic may
demand that the sampling distribution of the statistic be known before a decision
can be made. How else could we decide if the value we got was normal or abnor-
mal? It may well be the case that no one, physicist, sociologist, botanist, ever
does know these underlying distributions exactly; but astronomers are worse
off than most because of our necessarily small samples and our inability to
control experiments, leading to poor definitions of the underlying distributions.

Astronomers cannot avoid statistics and there are at least the following
reasons for this unfortunate situation.

(i) Error (range) assignment – ours, and the errors assigned by others: what
do they mean?

(ii) How can data be used best? Or at all?
(iii) Correlation, testing the hypothesis, model fitting; how do we proceed?
(iv) Incomplete samples, samples from an experiment which cannot be re-run,

upper limits; how can we use these to best advantage?
(v) Others describe their data and conclusions in statistical terms. We need

some self-defence.
(vi) But above all, we must decide. The decision process cannot be done with-

out some methodology, no matter how good the experiment. Rutherford
may not have known when he was using statistics.

This is not a book about statistics, the values or the science. It is about how to
get results in astronomy, using statistics, data analysis and statistical inference.

Consider first how we do science in order to see at what point ‘statistics’
enter(s) the process.
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4 Decision

1.1 How is science done?

In simplest terms, each experiment goes round a loop which can be character-
ized by six stages:

1. Observe: with an observing or data-gathering programme, record or collect
the data.

2. Reduce: clean up the data to remove experimental effects, i.e. flat field it,
calibrate it.

3. Analyse: obtain the numbers from the clean data – intensities, positions.
Produce from these summary descriptors of the data which enable com-
parison or modelling – descriptors that lead to reaching the decision which
governed the design of the experiment; and which are statistics.

4. Conclude: carry through a process to reach a decision. Test the hypothesis;
correlate; model, etc.

5. Reflect: what has been learnt? Is the decision plausible? Is it unexpected?
At which experimental stage must re-entry be made to check? What is
required to confirm this unexpected result? Or – what was inadequate in the
experimental design? How should the next version be defined? Is an extended
or new hypothesis suggested? Far too little time is spent here; perhaps the
pressure of observing application deadlines and/or the perceived need to
publish get the better of us.

6. Experiment design: if the hypothesis is important enough; if the data warrant
it; if previous experimental experience suggests it is possible; if technical
advances make it feasible – then the next experiment needs to be designed.
This may (and usually does) take the form of thinking out an observing
proposal, writing and submitting it. It may take the form of re-design of an
instrument on a current telescope. It may take the form of a proposal to build
a new instrument. It may take the form of designing a new telescope or space
mission, a process which, in itself, may occupy much of a research career.
The latest such projects involve multi-nation collaborations on scales of
billions of dollars. The timescales from initial plans to realization may range
to 40 years (e.g. the James Webb Space telescope; the Square Kilometre
Array).

And so back to stage 1.
This process is a loop and ‘experiments’ may begin at different points. For

instance, we disbelieve someone else’s conclusions based on their published
data set. We enter at point (3) or even (4); and we may then go around the
data-gathering cycle ourselves as a result. Or we enter at (5), looking at an
old result in the light of new and complementary ones from other fields – and
proceed to (6) and back to (1) . . .
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1.1 How is science done? 5

Table 1.1 Stages in astronomy experimentation

Stage How Examples Considerations

Observe In person?
Remotely?
Depends on facility

Experiment
design: calibration
integration time
Stats

What is wanted?
Number of objects

Stats

Reduce Algorithms Flat field
Flux calibration

Data integrity
Signal-to-noise
T Stats

Analyse Parameter
estimation,
hypothesis testing
T Stats

Intensity
measurements
Positions
T Stats

Frequentist,
Bayesian?

T Stats

Conclude Hypothesis testing

T Stats

Correlation tests
Distribution tests

T Stats

Believable,
repeatable,
understandable?
T Stats

Reflect Carefully; far too
little time is invested
here

Mission achieved?
A better way? ‘We
need more data’?
T Stats

The next observations

T Stats

Design Hone the mission;
build science case

Stats

New observations/
instrument/
telescope/space
mission

Feasibility – cost,
team design,
experience, human
resources;
simulations,
predictions
Stats

Of course it could be argued that (6) should start the process, but we need
some knowledge base before we start designing.

All too often we use (3) to set up the tests at (4). This carries the charge of
mingling hypothesis and data, as in the Black Cloud example.

Table 1.1 summarizes the process. Points in Table 1.1 at which recourse to
statistics or to statistical inference is important have been indicated by Stats;
a T appears when the issue applies to theorists as well as to experimentalists.
Few are the regions in which we can ignore statistics and statistical inference.
Experiment design needs to consider from the start what statistic or summarized
data form is required to achieve the desired outcome. There are then checks
throughout the experiment, and finally there is analysis in which the measured
statistics are used in inference. Applied statistics in the guise of forecasting is
increasingly used in astronomy instrument/survey/experiment design.
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6 Decision

1.2 Probability; probability distributions

The concept of probability is crucial in decision processes, and there is a com-
monly accepted relationship between probability and statistics. In a world in
which our statistics are derived from finite amounts of data, we need prob-
abilities as a basis for inference. For example, limited data yields us only a
partial idea of the point-spread function, such as the FWHM; we can only
assign probabilities to the range of point-spread functions roughly matching
this parameter.

We all have an inbuilt sense of probability. We know, for example, that the
height of adults is anything from, say, 1.5 to 2.5 m. We know this from the
totality of the population, all adults. But we know what a tall person is – and
it is not necessarily somebody who is 2.5 m tall. The distribution is not flat; it
peaks at around 1.7 m. The distribution of the heights of all adults, normalized
to have an area of 1.0, is the measured probability density function, often
called the probability distribution. (We meet them in a more rigorous context
in Chapter 2.) The tails contain little area; and it is the tails that give us the
decision: we probably call somebody tall when they are taller than 75 per cent
of us.

We have made a decision based on a statistic, by relating that statistic to
a probability distribution; we have decided that the person in question was
tall. Note also what we did – observe, reduce, analyse, conclude, probably
all in one glance. We did not do this rigorously in making a quantitative
assessment of just how tall, which would have required a detailed knowledge of
the distribution of height and a quantitative measurement. And reflect? Context
of our observation? Why did we wish to register/decide that the person was
tall? What next as a result? How was this person selected from the population?
The brain has not only done the five steps but has also set the result into an
extensive context; and this in processing the single glance.

The probability distribution in our minds – the heights of adults – is unlikely
to have a mathematical description; it is one determined by counting enough
of the population (probably subconsciously) so that it is well defined. There
are distributions for which mathematical description is very precise, such as
the Poisson and Gaussian (Normal) distributions, and there are many cases in
which we have good reason to believe that these must represent the underlying
probability distributions well.

This is also an example of a ‘ruling-out’; here we ruled out the hypothesis
that the person is of ‘ordinary’ height. There is a different type of statistical
inference, the ‘ruling-in’ process, in which we compute the probability of
getting a given result, and if it is ‘probable’, we accept the original hypothesis.
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1.3 Bolt-on statistics? 7

It is also an example of ‘counting’ to find the probabilities, the frequency
distribution. There are other ways of assigning probabilities, including opinion
and states of knowledge; and, in fact, there are instances in which we are
moderately comfortable with the paradoxical notion of assigning probabilities
to unique events. It is essential that our view of statistics and statistical inference
be broad enough to take such probability concepts on board.

1.3 Bolt-on statistics?

With regard to statistics and probability, in many of the conversations we have
had with users of the first edition of this book, we found that ‘statistics’ is
often seen as a bolt-on addition to scientific analysis, a technological feature
rather like dentistry; necessary, somewhat unpleasant, but a solved piece of
technology. In the aftermath of the global financial crisis beginning in 2008,
the role of quantitative finance was widely discussed. One of the failures that
was identified was the failure of statistical models of risk – failures that had
consequences costing trillions of dollars. Why the contradiction? Surely if
statistics and probability were that routine, things could not have gone wrong
quite so badly?

The answer is that there is a very wide range of degree of certainty associated
with the application of statistics. An early distinction was drawn by Knight
(1921), who was curious about why some businesses made huge profits and
some only modest ones. His suggestion was that the run-of-the-mill firms dealt
in risk, whereas the very successful ones (with an obvious selection effect
in operation) dealt in uncertainty. What did Knight mean by these terms,
especially ‘uncertainty’, which we often use interchangeably with words like
random, stochastic or probability?

Take a concept, implicit in our usual undergraduate lab statistics training,
in which we think we know the mean and standard deviation of our normally
distributed observable. To put the implication at its starkest, this means that
we know every single observation that we will ever make; only the order is
unknown. This is melodramatic phrasing, but it expresses the extraordinary
power of the assumption that we know a probability distribution. Often, when
we start out in statistics, we have an uneasy feeling that we are getting something
for nothing. In fact, there is a high price to pay in the scope of the assumptions
we make, either openly or unknowingly. This illustrates what Knight meant
by mere risk, in a business context: risk involves only known probabilities. A
casino is an example. Unless the roulette wheels are improperly engineered,
the management of a casino can predict its profits, as long as customers keep
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8 Decision

coming through the doors with the same amount of money in their pockets.
The probabilities are known, and the casino management knows exactly how
to set its margins to attain a given return.

Of course, not even a casino operates in this ideal environment. Taleb (2010)
gives the example of the single biggest loss experienced by a casino of which he
had apparently intimate knowledge: in a show put on to entertain idle patrons,
a performing tiger ate its trainer, with consequent eye-watering claims for
trauma, loss of earnings to the bereaved family, and so on. This is what Knight
meant by uncertainty and Taleb by his term ‘black swans’ – not only may the
probabilities not be known, they may not even have been considered.

Returning to the more familiar ground of astronomy, what do we learn for
the application of statistics to our subject? There is exactly the same continuum
between risk and uncertainty, reflected in the robustness of the assumptions we
make in order to pursue our statistical analyses. Do we know the parameters of
the distributions we assume? Probably not, but we can estimate them from the
data. How well we do this depends on how much data we have. If we have a
lot, we wonder if it is ‘all the same’, or whether the underlying parameters are
actually varying within the data set. Indeed, the very form of the distributions
we assume is an issue. Gaussian? To the extent that the central limit theorem
(Section 2.4.2.3) holds, perhaps. More realistically, we need a range of distri-
butions, each with its own prior probability and parameters . . . and so on, up
the hierarchy of complexity towards greater uncertainty.

As you embark on this little handbook, remember that the statistics you
will encounter represent a model of the world, in the same messy, complicated,
intuition-needing sense as the astronomy to which you may think you can ‘bolt it
on’. Making the measurement is the easy part, understanding the error is the hard
part; but as you will see if you persist with us, there is a framework (formally,
the framework of Bayesian inference, aided by the concept of hyperparameters)
that allows us to bound our ignorance and control its consequences – if we are
fortunate. If we are not, of course, we may be eaten by a tiger.

1.4 Probability and statistics in inference:
an overview of this book

Statistics are combinations of the data that do not depend on any unknown
parameters. The average is a common example. When we calculate the average
of a set of data, we expect that it will bear some relation to the true, underlying
mean of the distribution from which our data were drawn. In the classical

http://www.cambridge.org/9780521732499
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73249-9 - Practical Statistics for Astronomers: Second Edition
J. V. Wall and C. R. Jenkins
Excerpt
More information

1.4 Probability and statistics in inference: an overview 9

tradition, we calculate the sampling distribution of the average, the probabilities
of the various values it may assume as we (hypothetically) repeat our experiment
many times. We then know the probability that some range around our single
measurement will contain the true mean. This is information that we can use
to take decisions.

This is precisely the utility of statistics – they are laboriously discovered
combinations of observations which converge, for large sample sizes, to some
underlying parameter we want to know (say, the mean). Useful statistics are
actually rather few in number.

We meet the issues of probability distributions, statistics, the relation between
these, and the role of random-number analyses in Chapters 2 and 3. The long
development of these concepts is outlined in Table 1.2, a sketch of the timeline
of the development of probability and statistics. Origins of statistical inference
can be traced back to Aristotle (384–322 BC) who developed a logic framework
and stated a version of Occam’s Razor. For a fascinating historical study of
statistics and probability, see the erudite books by Anders Hald (1990, 1998).

In Chapter 2 we also meet a radically different way of making inferences –
the Bayesian approach, totally distinct in its logic from the ‘classical’ or
‘frequentist’ approach just discussed. The Bayesian approach focuses on the
probabilities right away, without the intermediate step of statistics. In the
Bayesian tradition, we invert the reasoning just described. The data, we say, are
unique and known; it is the mean that is unknown, that should have probability
attached to it. Without using statistics, we instead calculate the probability of
various values of the mean, given the data we have. This also allows us to
make decisions. In fact, as we shall see, this approach comes a great deal closer
to answering the questions that scientists actually ask. This drastic change in
approach came painfully and relatively recently – see Table 1.2. From Chapter 2
on, we invoke both methodologies to greater or lesser extent; we explain why in
context.

Chapter 4 Correlation and association provides our first look at a practical
area of statistics, namely correlations, searches for them in data sets as well as
tests of their significance. This area of statistics might well be the one which
most readily refutes the charge that statistics as a science has not discovered
anything.1 The original regression lines of Francis Galton (‘regression to medi-
ocrity’) played a major role in genetics, while subsequently the germ theory of
disease (John Snow) and the expansion of the Universe (Edwin Hubble) both
emerged from correlation analyses.

1 . . . but serves only as the lamp-post serves the drunken man: for support rather than for illumi-
nation (Andrew Lang, nineteenth-century poet and philosopher).
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10 Decision

Table 1.2 A brief history of probability and statistics

Year Individual(s) Key words Events

�1340 William of
Ockham,
or Occam

Occam’s Razor ‘It is useless to do with more what
can be done with less.’ Ockham, an
ordained Franciscan, was
excommunicated for his views on
separation of church and state,
amongst other things. In addition to
the application of the principle in
statistics and data modelling,
Hawking (1988) attributes the
discovery of quantum mechanics
to it.

1654 Pascal,
Fermat

odds,
probability
theory

Gombaud, Chevalier de Mere &
Mitton pose questions on gambling
odds to Pascal in �1654. Seven
letters exchanged between Blaise
Pascal & Pierre de Fermat are the
genesis of probability theory.

1657 Huygens probability First publication on probability, 14
problems (+ solutions) in gambling,
based on the Pascal–Fermat
correspondence; the only
publication on the subject for 50
years.

1662 Graunt descriptive
statistics, life
tables, survival
analysis

Publication of Graunt’s
Observations on the Bills of
Mortality; first known collection
and analysis of data for statistical
purposes; start of actuarial risk
analysis.

1692 Huygens,
Arbuthnot

probability Of the Laws of Chance, or, a method
of Calculation of the Hazards of
Game . . . ; Arbuthnot’s translation
of Huygens’ work becomes the
first English publication on
probability.

1665–1676 Newton,
Leibniz

calculus Newton & Leibniz independently
discover calculus; their dispute runs
for decades. Probability theory can
proceed.

1687 Newton binomial
distribution

In the monumental Principia,
Newton changes the direction of
physics and mathematics forever;
the book includes the binomial
probability distribution.
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