Principles and Techniques of Biochemistry and Molecular Biology

Seventh edition

EDITED BY KEITH WILSON AND JOHN WALKER

This new edition of the bestselling textbook integrates the theoretical principles and experimental techniques common to all undergraduate courses in the bio- and medical sciences. Three of the 16 chapters have new authors and have been totally rewritten. The others have been updated and extended to reflect developments in their field exemplified by a new section on stem cells. Two new chapters have been added. One on clinical biochemistry discusses the principles underlying the diagnosis and management of common biochemical disorders. The second one on drug discovery and development illustrates how the principles and techniques covered in the book are fundamental to the design and development of new drugs. In-text worked examples are again used to enhance student understanding of each topic and case studies are selectively used to illustrate important examples. Experimental design, quality assurance and the statistical analysis of quantitative data are emphasised throughout the book.

• Motivates students by including cutting-edge topics and techniques, such as drug discovery, as well as the methods they will encounter in their own lab classes
• Promotes problem solving by setting students a challenge and then guiding them through the solution
• Integrates theory and practise to ensure students understand why and how each technique is used.

KEITH WILSON is Professor Emeritus of Pharmacological Biochemistry and former Head of the Department of Biosciences, Dean of the Faculty of Natural Sciences, and Director of Research at the University of Hertfordshire.

JOHN WALKER is Professor Emeritus and former Head of the School of Life Sciences at the University of Hertfordshire.
Cover illustration

Main image Electrophoresis gel showing recombinant protein. Photographer: J. C. Revy. Courtesy of Science Photo Library.

Top inset Transcription factor and DNA molecule. Courtesy of: Laguna Design/Science Photo Library.

Second inset Microtubes, pipettor (pipette) tip & DNA sequence. Courtesy of Tek Image/Science Photo Library.

Fourth inset Embryonic stem cells. Courtesy of Science Photo Library.

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by
Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521516358

Fourth edition © Cambridge University Press 1993
Fifth edition © Cambridge University Press 2000
Sixth edition © Cambridge University Press 2005
Seventh edition © Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published by Edward Arnold 1975 as A Biologist’s Guide to Principles and Techniques of Practical
Biochemistry
Biochemistry; Reprinted 1995, 1997; Fifth edition 2000
Sixth edition first published by Cambridge University Press 2005 as Principles and Techniques of Biochemistry
and Molecular Biology; Reprinted 2006, 2007
Seventh edition first published by Cambridge University Press 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Principles and techniques of biochemistry and molecular biology / edited by Keith Wilson, John Walker. – 7th ed.
p. cm.
QP519.7.P75 2009
615'.015–dc22 2009043277

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.
CONTENTS

Preface to the seventh edition xi
List of contributors xiii
List of abbreviations xv

1 Basic principles 1
K. WILSON
1.1 Biochemical and molecular biology studies 1
1.2 Units of measurement 3
1.3 Weak electrolytes 6
1.4 Quantitative biochemical measurements 16
1.5 Safety in the laboratory 35
1.6 Suggestions for further reading 37

2 Cell culture techniques 38
A.R. BAYDOUN
2.1 Introduction 38
2.2 The cell culture laboratory and equipment 39
2.3 Safety considerations in cell culture 43
2.4 Aseptic techniques and good cell culture practice 44
2.5 Types of animal cell, characteristics and maintenance in culture 49
2.6 Stem cell culture 61
2.7 Bacterial cell culture 68
2.8 Potential use of cell cultures 71
2.9 Suggestions for further reading 72

3 Centrifugation 73
K. OHLENDECK
3.1 Introduction 73
3.2 Basic principles of sedimentation 74
3.3 Types, care and safety aspects of centrifuges 79
3.4 Preparative centrifugation 86
3.5 Analytical centrifugation 95
3.6 Suggestions for further reading 99
4 Microscopy
S. W. PADDOCK
4.1 Introduction 100
4.2 The light microscope 103
4.3 Optical sectioning 116
4.4 Imaging living cells and tissues 123
4.5 Measuring cellular dynamics 126
4.6 The electron microscope (EM) 129
4.7 Image archiving 133
4.8 Suggestions for further reading 136

5 Molecular biology, bioinformatics and basic techniques
R. RAPLEY
5.1 Introduction 138
5.2 Structure of nucleic acids 139
5.3 Genes and genome complexity 145
5.4 Location and packaging of nucleic acids 149
5.5 Functions of nucleic acids 152
5.6 The manipulation of nucleic acids – basic tools and techniques 162
5.7 Isolation and separation of nucleic acids 164
5.8 Molecular biology and bioinformatics 170
5.9 Molecular analysis of nucleic acid sequences 171
5.10 The polymerase chain reaction (PCR) 178
5.11 Nucleotide sequencing of DNA 187
5.12 Suggestions for further reading 194

6 Recombinant DNA and genetic analysis
R. RAPLEY
6.1 Introduction 195
6.2 Constructing gene libraries 196
6.3 Cloning vectors 206
6.4 Hybridisation and gene probes 223
6.5 Screening gene libraries 225
6.6 Applications of gene cloning 229
6.7 Expression of foreign genes 234
6.8 Analysing genes and gene expression 240
6.9 Analysing whole genomes 254
6.10 Pharmacogenomics 259
6.11 Molecular biotechnology and applications 260
6.12 Suggestions for further reading 262

7 Immunochemical techniques
R. BURNS
7.1 Introduction 263
7.2 Making antibodies 273
Contents

7.3 Immunoassay formats 283
7.4 Immuno microscopy 291
7.5 Lateral flow devices 291
7.6 Epitope mapping 292
7.7 Immunoblotting 293
7.8 Fluorescent activated cell sorting (FACS) 293
7.9 Cell and tissue staining techniques 294
7.10 Immunocapture polymerase chain reaction (PCR) 295
7.11 Immunoaffinity chromatography (IAC) 295
7.12 Antibody-based biosensors 296
7.13 Therapeutic antibodies 297
7.14 The future uses of antibody technology 299
7.15 Suggestions for further reading 299

8 Protein structure, purification, characterisation and function analysis 300
8.1 Ionic properties of amino acids and proteins 300
8.2 Protein structure 304
8.3 Protein purification 307
8.4 Protein structure determination 328
8.5 Proteomics and protein function 340
8.6 Suggestions for further reading 351

9 Mass spectrometric techniques 352
9.1 Introduction 352
9.2 Ionisation 354
9.3 Mass analysers 359
9.4 Detectors 377
9.5 Structural information by tandem mass spectrometry 379
9.6 Analysing protein complexes 390
9.7 Computing and database analysis 394
9.8 Suggestions for further reading 397

10 Electrophoretic techniques 399
10.1 General principles 399
10.2 Support media 403
10.3 Electrophoresis of proteins 407
10.4 Electrophoresis of nucleic acids 422
10.5 Capillary electrophoresis 427
10.6 Microchip electrophoresis 431
10.7 Suggestions for further reading 432
11 Chromatographic techniques

K. Wilson

11.1 Principles of chromatography 433
11.2 Chromatographic performance parameters 435
11.3 High-performance liquid chromatography 446
11.4 Adsorption chromatography 453
11.5 Partition chromatography 455
11.6 Ion-exchange chromatography 459
11.7 Molecular (size) exclusion chromatography 462
11.8 Affinity chromatography 465
11.9 Gas chromatography 470
11.10 Suggestions for further reading 476

12 Spectroscopic techniques: I Spectrophotometric techniques

A. Hofmann

12.1 Introduction 477
12.2 Ultraviolet and visible light spectroscopy 482
12.3 Fluorescence spectroscopy 493
12.4 Luminometry 507
12.5 Circular dichroism spectroscopy 509
12.6 Light scattering 514
12.7 Atomic spectroscopy 516
12.8 Suggestions for further reading 519

13 Spectroscopic techniques: II Structure and interactions

A. Hofmann

13.1 Introduction 522
13.2 Infrared and Raman spectroscopy 523
13.3 Surface plasmon resonance 527
13.4 Electron paramagnetic resonance 530
13.5 Nuclear magnetic resonance 536
13.6 X-ray diffraction 546
13.7 Small-angle scattering 549
13.8 Suggestions for further reading 551

14 Radioisotope techniques

R. J. Slater

14.1 Why use a radioisotope? 553
14.2 The nature of radioactivity 554
14.3 Detection and measurement of radioactivity 561
14.4 Other practical aspects of counting of radioactivity and analysis of data 573
14.5 Safety aspects 577
14.6 Suggestions for further reading 580
Contents

15 **Enzymes** 581
K. WILSON
15.1 Characteristics and nomenclature 581
15.2 Enzyme steady-state kinetics 584
15.3 Analytical methods for the study of enzyme reactions 602
15.4 Enzyme active sites and catalytic mechanisms 611
15.5 Control of enzyme activity 615
15.6 Suggestions for further reading 624

16 **Principles of clinical biochemistry** 625
J. FYFFE AND K. WILSON
16.1 Principles of clinical biochemical analysis 625
16.2 Clinical measurements and quality control 629
16.3 Examples of biochemical aids to clinical diagnosis 640
16.4 Suggestions for further reading 658
16.5 Acknowledgements 659

17 **Cell membrane receptors and cell signalling** 660
K. WILSON
17.1 Receptors for cell signalling 660
17.2 Quantitative aspects of receptor–ligand binding 663
17.3 Ligand-binding and cell-signalling studies 680
17.4 Mechanisms of signal transduction 685
17.5 Receptor trafficking 703
17.6 Suggestions for further reading 707

18 **Drug discovery and development** 709
K. WILSON
18.1 Human disease and drug therapy 709
18.2 Drug discovery 718
18.3 Drug development 727
18.4 Suggestions for further reading 734

Index 736

The colour figure section is between pages 128 and 129
In designing the content of this latest edition we continued our previous policy of placing emphasis on the recommendations we have received from colleagues and academics outside our university. Above all, we have attempted to respond to the invaluable feedback from student users of our book both in the UK and abroad. In this seventh edition we have retained all 16 chapters from the previous edition. All have been appropriately updated to reflect recent developments in their fields, as exemplified by the inclusion of a section on stem cells in the cell culture chapter. Three of these chapters have new authors and have been completely rewritten. Robert Burns, Scottish Agricultural Science Agency, Edinburgh has written the chapter on immunochemical techniques, and Andreas Hofmann, Eskitis Institute of Molecular Therapies, Griffith University, Brisbane, Australia has written the two chapters on spectroscopic techniques. We are delighted to welcome both authors to our team of contributors.

In addition to these changes of authors, two new chapters have been added to the book. Our decision taken for the sixth edition to include a section on the biochemical principles underlying clinical biochemistry has been well received and so we have extended our coverage of the subject and have devoted a whole chapter (16) to this subject. Written in collaboration with Dr John Fyffe, Consultant Biochemist, Royal Hospital for Sick Children, Yorkhill, Glasgow, new topics that are discussed in the chapter include the diagnosis and management of kidney disease, diabetes, endocrine disorders including thyroid dysfunction, conditions of the hypothalamus–pituitary–adrenal axis such as pregnancy, and pathologies of plasma proteins such as myeloma. Case studies are included to illustrate how the principles discussed apply to the diagnosis and treatment of individual patients with the conditions.

Our second major innovation for this new edition is the introduction of a new chapter on drug discovery and development. The strategic approaches to the discovery of new drugs has been revolutionised by developments in molecular biology. Pharmaceutical companies now rely on many of the principles and experimental techniques discussed in the chapters throughout the book to identify potential drug targets, screen chemical libraries and to evaluate the safety and efficacy of selected candidate drugs. The new chapter illustrates the principles of target selection by reference to current drugs used in the treatment of atherosclerosis and HIV/AIDS, emphasises the strategic decisions to be taken during the various stages of drug discovery and
development and discusses the issues involved in clinical trials and the registration of new drugs.

We continue to welcome constructive comments from all students who use our book as part of their studies and academics who adopt the book to complement their teaching. Finally, we wish to express our gratitude to the authors and publishers who have granted us permission to reproduce their copyright figures and our thanks to Katrina Halliday and her colleagues at Cambridge University Press who have been so supportive in the production of this new edition.

KEITH WILSON AND JOHN WALKER
CONTRIBUTORS

PROFESSOR A. AITKEN
Division of Biomedical & Clinical Laboratory Sciences
University of Edinburgh
George Square
Edinburgh EH8 9XD
Scotland, UK

DR A. R. BAYDOUN
School of Life Sciences
University of Hertfordshire
College Lane
Hatfield
Herts AL10 9AB, UK

DR R. BURNS
Scottish Agricultural Science Agency
1 Roddinglaw Road
Edinburgh EH12 9FJ
Scotland, UK

DR J. FYFFE
Consultant Clinical Biochemist
Department of Clinical Biochemistry
Royal Hospital for Sick Children
Yorkhill
Glasgow G3 8SF
Scotland, UK

PROFESSOR ANDREAS HOFMANN
Structural Chemistry
Eskitis Institute for Cell & Molecular Therapeutics
Griffith University
Nathan
Brisbane, Qld 4111
Australia
PROFESSOR K. OHLENDIECK
Department of Biology
National University of Ireland
Maynooth
Co. Kildare
Ireland

DR S. W. PADDOCK
Howard Hughes Medical Institute
Department of Molecular Biology
University of Wisconsin
1525 Linden Drive
Madison, WI 53706
USA

DR R. RAPLEY
School of Life Sciences
University of Hertfordshire
College Lane
Hatfield
Herts AL10 9AB, UK

PROFESSOR R. J. SLATER
School of Life Sciences
University of Hertfordshire
College Lane
Hatfield
Herts AL10 9AB, UK

PROFESSOR J. M. WALKER
School of Life Sciences
University of Hertfordshire
College Lane
Hatfield
Herts AL10 9AB, UK

PROFESSOR K. WILSON
Emeritus Professor of Pharmacological Biochemistry
School of Life Sciences
University of Hertfordshire
College Lane
Hatfield
Herts AL10 9AB, UK
The following abbreviations have been used throughout this book.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>adenosine 5'-monophosphate</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine 5’-diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine 5’-triphosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base-pairs</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic AMP</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-[(3-chloroamidopropyl)dimethylamino]-1-propanesulphonic acid</td>
</tr>
<tr>
<td>c.p.m.</td>
<td>counts per minute</td>
</tr>
<tr>
<td>CTP</td>
<td>cytidine triphosphate</td>
</tr>
<tr>
<td>DDT</td>
<td>2,2-bis-(p-chlorophenyl)-1,1,1-trichloroethane</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>e^-</td>
<td>electron</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetra-acetate</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin adenine dinucleotide (oxidised)</td>
</tr>
<tr>
<td>FADH₂</td>
<td>flavin adenine dinucleotide (reduced)</td>
</tr>
<tr>
<td>FMN</td>
<td>flavin mononucleotide (oxidised)</td>
</tr>
<tr>
<td>FMNH₂</td>
<td>flavin mononucleotide (reduced)</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>HAT</td>
<td>hypoxanthine, aminopterin, thymidine medium</td>
</tr>
<tr>
<td>Hepes</td>
<td>4(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase-pairs</td>
</tr>
<tr>
<td>M_r</td>
<td>relative molecular mass</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>nicotinamide adenine dinucleotide (oxidised)</td>
</tr>
<tr>
<td>NADH</td>
<td>nicotinamide adenine dinucleotide (reduced)</td>
</tr>
<tr>
<td>NADP⁺</td>
<td>nicotinamide adenine dinucleotide phosphate (oxidised)</td>
</tr>
<tr>
<td>NADPH</td>
<td>nicotinamide adenine dinucleotide phosphate (reduced)</td>
</tr>
<tr>
<td>Pipes</td>
<td>1,4-piperazinebis(ethanesulphonic acid)</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>1</sub></td>
<td>inorganic phosphate</td>
</tr>
<tr>
<td>p.p.m.</td>
<td>parts per million</td>
</tr>
<tr>
<td>p.p.b.</td>
<td>parts per billion</td>
</tr>
<tr>
<td>PP<sub>i</sub></td>
<td>inorganic pyrophosphate</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>r.p.m.</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>Tris</td>
<td>2-amino-2-hydroxymethylpropane-1,3-diol</td>
</tr>
</tbody>
</table>