
Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Introduction

If you try to make the software foolproof,

they will just invent a better fool!

Dorothy Graham

1.1 Why Agile?

In today’s highly competitive IT business, companies experience massive pressures

to be as effective and efficient as possible in developing and delivering successful

software solutions. If you don’t find strategies to reduce the cost of software devel-

opment, your competitors will, allowing them to undercut your prices, to offer to

develop and deliver products faster, and ultimately to steal business from you.

Often in the past, testing was an afterthought; now it is increasingly seen as the

essential activity in software development and delivery. However, poor or ineffective

testing can be just as bad as no testing and may cost significant time, effort, and

money, but ultimately fail to improve software quality, with the result that your

customers are the ones who find and report the defects in your software!

If testing is the right thing to do, how can you ensure that you are doing testing

right?

If you ask managers involved in producing software whether they follow industry

best practices in their development and testing activities, almost all of them will

confidently assure you that they do. The reality is often far less clear; even where a

large formal process documenting best development and testing practice has been

introduced into an organization, it is very likely that different members of the team

will apply their own testing techniques, employ a variety of different documentation

(such as their own copies of test plans and test scripts), and use different approaches

for assessing and reporting testing progress on different projects. Even the language

is likely to be different, with staff using a variety of terms for the same thing, as well

as using the same terms for different things!

Just how much time, effort, and money does this testing chaos cost your organiza-

tion? Can you estimate just how much risk a project carries in terms of late delivery,

with poor testing resulting in the release of poor-quality software? To put this in per-

spective, the U.S. National Institute of Standards and Technology recently reported

that, for every $1 million spent on software implementations, businesses typically

incur more than $210,000 (or between a fifth and a quarter of the overall budget) of

1

www.cambridge.org/9780521726870
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Agile Testing: How to Succeed in an Extreme Testing Environment

additional costs caused by problems associated with impact of postimplementation

faults [1].

The most common reason that companies put up with this situation is that they

take a short-term view of the projects they run; it is much better to just get on with

it and “make progress” than to take a more enlightened, but longer-term, view to

actually address and fix the problems.

Many organizations are now adopting some form of formal test process as the

solution to these problems. In this context, a process provides a means of document-

ing and delivering industry best practice in software development and testing to all

of the staff in the organization. The process defines who should do what and when,

with standard roles and responsibilities for project staff, and guidance on the correct

way of completing their tasks. The process also provides standard reusable templates

for things like test plans, test scripts, and testing summary reports and may even

address issues of process improvement [2].

Although there have been numerous attempts to produce an “industry standard”

software testing process (e.g., the Software Process Engineering Metamodel [3]),

many practitioners and organizations express concerns about the complexity of such

processes. Typical objections include:

� “The process is too big” – there is just too much information involved and it takes

too long to rollout, adopt, and maintain.

� “That’s not the way we do things here” – every organization is different and there

is no one-size-fits-all process.

� “The process is too prescriptive” – a formal process stifles the creativity and

intuition of bright and imaginative developers and testers.

� “The process is too expensive” – if we are trying to reduce the cost of soft-

ware development, why would we spend lots of money on somebody else’s best

practices?

Interestingly, even where individuals and organizations say they have no process,

this is unlikely to be true – testers may invent it on the fly each morning when they

start work, but each tester will follow some consistent approach to how he or she

performs their testing. It is possible for this “approach” to be successful if you are

one of those talented supertesters or you work in an organization that only hires

“miracle QA” staff. For the rest of us, we need to rely on documented best practices

to provide guidance on the who, the what, and the when of testing, and to provide

reusable templates for the things we create, use, or deliver as part of our testing

activities.

So, here is the challenge: how is it possible to produce good-quality software, on

time and to budget, without forcing a large, unwieldy, and complex process on the

developers and testers, but still providing them with sufficient guidance and best

practices to enable them to be effective and efficient at their jobs? To restate this

question, what is the minimum subset of industry best practice that can be used

while still delivering quality software?

www.cambridge.org/9780521726870
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

3 Introduction

This book provides practical guidance to answer this question by means of real-

world case studies, and will help you to select, adopt, and use a personally customized

set of agile best practices that will enable you and your colleagues to deliver quality

testing in as effective and efficient a manner as possible.

1.2 Suggestions on How to Read This Book

This book is divided into three main sections (plus the appendices), each of which

are closely linked, but each of which can be read and applied separately.

Part 1 of the book provides a review of both the traditional or “classic” view of

software testing process and examples of agile approaches:

� If you are interested in reviewing the early history of software development

and testing process, Chapter 2 (Old-School Development and Testing) begins by

reviewing the traditional or “classic” view of process. This chapter explores the

good and the bad aspects of classic test process, and provides a useful baseline

for the rest of the book to build on.

� If you are interested in understanding the development of agile approaches to

software development and testing, Chapter 3 (Agile Development and Testing)

provides an overview of the principal agile approaches that have been used to

develop software, with particular emphasis on the testing aspects of the method

described.

� Although Chapter 3 provides a high-level overview of the principal agile

approaches, if you require a deeper understanding of these methods then refer

to Appendices A through D. You may find this to be of particular benefit in

preparation for reading the agile case studies in Part 2 of the book.

Part 2 of the book contains twenty case studies, which provide real-world examples

of how different organizations and individual practitioners have worked in an agile

development and testing framework or have implemented their own agile testing

approaches. Each chapter reviews the specific testing requirements faced by the

testers, provides a summary of the agile solution they adopted, describes the overall

success of the approach, and provides a discussion of which specific aspects of the

approach worked well, and which aspects might be improved or omitted in future

testing projects.

Part 3 of this book provides an analysis of the agile case studies presented in

Part 2 and draws upon the material from Part 1 to make a series of proposals

about what components might be used to generate your own successful agile testing

process:

� If you would like some guidance on agile best practices from a practitioner

perspective, Chapter 24 (Analysis of the Case Studies) examines in detail the

www.cambridge.org/9780521726870
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Agile Testing: How to Succeed in an Extreme Testing Environment

agile case studies presented in Part 2, identifying particularly successful agile

techniques, common themes (such as successful reusable templates), as well as

those testing approaches that were not successful and which may need to be

treated with caution.

� If you are interested in guidance on how to set up your own agile development

and testing process, Chapter 25 (My Agile Process) draws on the information

provided in the case studies and their analysis to make a series of proposals for

how you might set up and run a practical, effective, and efficient agile testing

process.

� If you would like some guidance on how to introduce your agile testing method

into your own organization, Chapter 26 (The Roll-out and Adoption of My Agile

Process) provides a series of tried and tested best practices describing how you

can roll out the process and drive its successful use and adoption.

The Appendices

If you would like to find more detail on the agile methods described briefly in

Chapter 3, Appendices A through D provide further description of each of the key

agile approaches covered in Chapter 3, with particular emphasis on the software

quality aspects of each approach. You may find value in reading these appendices in

preparation for reading the case studies presented in Part 2 of this book.

Appendices E through G provide a set of reusable testing templates that can

be used as a resource to be reused in your own agile process (these templates are

also available in electronic format from the Cambridge University Press Web site at

http://www.cup.agiletemplates.com), including

� an agile test script template,

� an agile test result record form template, and

� an agile test summary report template.

Appendix H contains a checklist of agile best practices that shows which practices

are particularly appropriate for the different styles and sizes of agile project described

in Chapter 25. This checklist can be used as a summary of the practices and as an

aide memoire to assist you in populating your own agile process.

References cited in the text are fully expanded in the References section at the

back of the book.

www.cambridge.org/9780521726870
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

PART ONE

REVIEW OF OLD-SCHOOL AND

AGILE APPROACHES

Fact of the matter is, there is no hip world, there is no straight world. There’s a

world, you see, which has people in it who believe in a variety of different

things. Everybody believes in something and everybody, by virtue of the fact

that they believe in something, use that something to support their own

existence.

Frank Zappa

This section of the book provides a review of both the traditional or “classic” view of

software testing process and agile approaches.

The chapters in this section are:

� Chapter 2 – Old-School Development and Testing, which begins by reviewing the

traditional or “classic” view of software testing process. This chapter will explore

the good and bad aspects of classic test process, and provides a useful baseline

for the rest of the book to build on

� Chapter 3 – Agile Development and Testing, which provides a review of the

most prominent agile approaches that have been used to develop software, with

particular emphasis on the testing aspects of the method described. If additional

information on a particular approach is needed, more complete details of each

method are provided in Appendices A to D.

5

www.cambridge.org/9780521726870
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Old-School Development and Testing

Testing is never completed, it’s simply abandoned!

Simon Mills

2.1 Introduction

This chapter discusses what software development and testing process is, reviews

the historical development of process, and concludes by providing a review of the

elements of a traditional or “classic” software testing process, providing a useful

baseline for the rest of the book to build on.

2.2 So, What Is Process?

A process seeks to identify and reuse common elements of some particular approach

to achieving a task, and to apply those common elements to other, related tasks.

Without these common reusable elements, a process will struggle to provide an

effective and efficient means of achieving those tasks, and find it difficult to achieve

acceptance and use by other practitioners working in that field.

Test process is no different; we have many different tasks that need to be achieved

to deliver effective and efficient testing, and at a variety of different levels of testing

from component/unit/developer testing, through integration/module testing, on into

systems testing, and through to acceptance testing [4].

Even before testing process was “invented”, good testers have done things in a

particular way to achieve good results – such as the best way to find the most defects,

to complete testing more quickly or more cheaply, to save time by reusing things

they had produced in earlier testing projects (such as a template for a test plan or a

test script), or to ensure consistent nomenclature (such as common terms for testing

phases).

Such enlightened practitioners were even known to share such best practices

with their colleagues, passing on or swapping reusable templates, publishing papers

on testing techniques, or mentoring other staff on test management approaches, for

example.

As the IT industry matured, with customers demanding increasingly complex

systems, of ever higher quality, in shorter timescales and with lower cost, the

7

www.cambridge.org/9780521726870
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Agile Testing: How to Succeed in an Extreme Testing Environment

Requirements

Design

Implementation

Testing

Maintenance

Risk Profile

2.1 The Waterfall Phases and Risk Profile (dotted line).

resulting commercial pressures forced those organizations developing software to

seek methods to ensure their software development was as effective and efficient as

possible. If they did not find the means to deliver software faster, cheaper, and with

better quality, their competitors would.

Successive waves of new technologies, such as procedural programming, fourth-

generation languages, and object orientation, all promised to ensure reductions in

the occurrence of defects, to accelerate development times, and to reduce the cost

of development. Interestingly, it was observed that it was still possible to write poor-

quality software that failed to achieve its purpose and performed poorly or included

defects, no matter what technologies were used!

As with so many instances of a new technology failing to solve a particular

problem, the issue actually turns out to be a people problem. Human beings need

guidance, they need to build upon the knowledge and experiences of others, they need

to understand what works and what doesn’t work, and they need to avoid wasting time

reinventing things that other practitioners have already successfully produced and

used. Project chaos, where each project and practitioner uses different techniques,

employs different terminology, or uses (or worse, reinvents from scratch) different

documentation, was increasingly considered to be unacceptable.

The following sections review a number of the early approaches to software

development and testing that sought to avoid such project chaos.

2.3 Waterfall

One of the earliest approaches to software development is the waterfall approach.

A paper published by Winston W. Royce in the 1970s [5] described a sequential

software development model containing a number of phases, each of which must be

completed before the next begins. Figure 2.1 shows the classic interpretation of the

phases in a waterfall project.

www.cambridge.org/9780521726870
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

9 Old-School Development and Testing

From a quality perspective, the waterfall approach has been often criticized

because testing begins late in the project; as a consequence, a high degree of project

risk (that is, failure of the software to meet customer expectations, to be delivered

with acceptable levels of defects, or to perform adequately) is retained until late into

the project. With the resultant reworking and retesting caused by the late detection

of defects, waterfall projects were also likely to incur additional effort, miss their

delivery dates, and exceed their budgets.

The waterfall approach has also been criticized for its lack of responsiveness to

customer requests for changes to the system being developed. Historically, it was

typical for all of the requirements to be captured at the start of the project and to

be set in stone throughout the rest of the development. A frequent result of this

approach was that by the time the software had been delivered (sometimes months

or even years later), it no longer matched the needs of the customer, which had

almost certainly changed by then.

Because of increasing dissatisfaction with the rigid structure of waterfall projects,

other solutions were investigated that would be more flexible in terms of addressing

changing requirements.

2.4 Spiral

Many attempts were made to address the shortcomings of the waterfall approach,

such as the spiral model of software development defined by Barry Boehm in 1988 [6].

Intended for use in large, complex, and costly projects, and intended to address the

issues of meeting customer requirements, this incremental development process

relied heavily on the development and testing of a series of software prototypes of the

final system. The typical steps involved in a spiral model–driven project are as follows:

1. In discussion with the customer, the requirements for the system are defined and

documented in as much detail as possible.

2. An initial design is created based on the requirements.

3. A sequence of increasingly complete prototypes are constructed from the design

in order to

� test the strengths and weaknesses of the prototypes, and to highlight any

risks;

� assist in refining the requirements by obtaining customer feedback; and

� assist in refining the planning and design.

4. The risks identified by testing the prototypes are reviewed with the customer,

who can make a decision whether to halt or continue the project.

5. Steps 2 through 4 are repeated until the customer is satisfied that the refined

prototype reflects the functionality of the desired system, and the final system is

then developed on this basis.

6. The completed system is thoroughly tested (including formal acceptance testing)

and delivered to the customer.

www.cambridge.org/9780521726870
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Agile Testing: How to Succeed in an Extreme Testing Environment

Cost

Release

Review Progress

2. Identify & R
esolve R

isks1.
 D

et
er

m
in
e

O
bj
ec

tiv
es

3.
 D

ev
el
op

m
en

t &
 T
es

t4. Plan N
ext Iteration

2.2 Graphical Overview of the Spiral Model.

7. Where appropriate, ongoing maintenance and test are performed to prevent

potential failures and to maximize system availability.

Figure 2.2 provides a graphical overview of a typical interpretation of the spiral

model.

Although considered to be an improvement over the waterfall approach in terms

of delivering systems that more closely match the customer’s requirements, and

for delivering higher-quality software (achieved in large part by the spiral model,

which encourages early and continued testing of the prototypes), issues existed

regarding the difficulty of estimating effort, timescales, and cost of delivery; the

nondeterministic nature of the cycle of prototype development and testing meant

that it was difficult to bound the duration and effort involved in delivering the final

product.

2.5 Iterative

Iterative models of software development evolved to address issues raised by both

waterfall and spiral approaches, with the goal of breaking large monolithic develop-

ment projects into smaller, more easily managed iterations. Each iteration would

produce a tangible deliverable (typically some executable element of the system

under development).

The Objectory method [7] provides a good example of such an approach. In

1987, while assisting telecommunications company Ericsson AB with its software

www.cambridge.org/9780521726870
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-72687-0 — Agile Testing: How to Succeed in an Extreme Testing Environment
John Watkins
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

11 Old-School Development and Testing

development efforts, and concerned with the shortcomings of earlier methods, Ivar

Jacobson brought together a number of the development concepts he had been think-

ing about, such as use cases [8], object-oriented design [9], and iterative development,

to create a new approach to developing successful object-oriented applications.

The Objectory method supported innovative techniques for requirements anal-

ysis, visual modeling of the domain, and an iterative approach to managing the

execution of the project. In essence, Objectory would break down a project that

might have been run in a large and inflexible waterfall manner into smaller, more

easily understood, implemented, and tested iterations.

Such an approach brought a number of important benefits for software quality:

� Testing could begin much earlier in the project (from the first iteration), enabling

defects to be identified and fixed in a timely manner, with the result that

timescales were not impacted, and that the effort and cost of fixing and retesting

defects were kept low.1

� Testing would continue throughout the project (within each iteration), ensuring

that new defects were found and fixed in a timely manner, that newly added

system functionality did not adversely affect the existing software quality, and

verifying that defects found in earlier iterations did not reappear in the most

recent iteration.

� The valuable visual metaphor provided by use cases and visual modeling enabled

the developers and the customer to more easily understand the intention of the

system functionality – in effect the customer, analyst, designer, and tester share

a common language and understanding of the system.

� Testers discovered that the scenarios described by the use cases could very easily

be used to design and implement effective test cases2 – the actors (people or other

systems) identified in the use cases and their interactions with the system under

development, mapped easily onto the steps and verifications needed to develop

the test scripts.

The Objectory process was organized around three phases:

1. The requirements phase – which involves the construction of three models that

describe in a simple, natural-language manner what the system should do:

� The use case model – which documents the interactions between the actors

and the system, which are typically captured using use case diagrams and

natural-language descriptions.

� The domain model – which documents the entities within the system, their

properties, and their relationships.

1 It is generally considered that for each phase of the project during which you fail to find a bug, the cost of

fixing it increases by a factor of 10 [4]. In practice, my experience is that this is a conservative estimate.
2 A test case represents the design for a test. A test case is implemented by means of a test script.

www.cambridge.org/9780521726870
www.cambridge.org

