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F A C T O R I Z A T I O N A N D T H E P R I M E S

1. The laws of arithmetic
The object of the higher arithmetic is to discover and to establish general
propositions concerning the natural numbers 1, 2, 3, . . . of ordinary arith-
metic. Examples of such propositions are the fundamental theorem (I.4)∗
that every natural number can be factorized into prime numbers in one
and only one way, and Lagrange’s theorem (V.4) that every natural num-
ber can be expressed as a sum of four or fewer perfect squares. We are not
concerned with numerical calculations, except as illustrative examples, nor
are we much concerned with numerical curiosities except where they are
relevant to general propositions.

We learn arithmetic experimentally in early childhood by playing with
objects such as beads or marbles. We first learn addition by combining two
sets of objects into a single set, and later we learn multiplication, in the form
of repeated addition. Gradually we learn how to calculate with numbers,
and we become familiar with the laws of arithmetic: laws which probably
carry more conviction to our minds than any other propositions in the whole
range of human knowledge.

The higher arithmetic is a deductive science, based on the laws of arith-
metic which we all know, though we may never have seen them formulated
in general terms. They can be expressed as follows.

∗ References in this form are to chapters and sections of chapters of this book.
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2 The Higher Arithmetic

Addition. Any two natural numbers a and b have a sum, denoted by
a + b, which is itself a natural number. The operation of addition satisfies
the two laws:

a + b = b + a (commutative law of addition),

a + (b + c) = (a + b) + c (associative law of addition),

the brackets in the last formula serving to indicate the way in which the
operations are carried out.

Multiplication. Any two natural numbers a and b have a product, denoted
by a × b or ab, which is itself a natural number. The operation of
multiplication satisfies the two laws

ab = ba (commutative law of multiplication),

a(bc) = (ab)c (associative law of multiplication).

There is also a law which involves operations both of addition and of
multiplication:

a(b + c) = ab + ac (the distributive law).

Order. If a and b are any two natural numbers, then either a is equal
to b or a is less than b or b is less than a, and of these three possibilities
exactly one must occur. The statement that a is less than b is expressed
symbolically by a < b, and when this is the case we also say that b is
greater than a, expressed by b > a. The fundamental law governing this
notion of order is that

i f a < b and b < c then a < c.

There are also two other laws which connect the notion of order with the
operations of addition and multiplication. They are that

i f a < b then a + c < b + c and ac < bc

for any natural number c.
Cancellation. There are two laws of cancellation which, though they

follow logically from the laws of order which have just been stated, are
important enough to be formulated explicitly. The first is that

i f a + x = a + y then x = y.

This follows from the fact that if x < y then a + x < a + y, which is
contrary to the hypothesis, and similarly it is impossible that y < x , and
therefore x = y. In the same way we get the second law of cancellation,
which states that

i f ax = ay then x = y.
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Factorization and the Primes 3

Subtraction. To subtract a number b from a number a means to find, if
possible, a number x such that b + x = a. The possibility of subtraction
is related to the notion of order by the law that b can be subtracted from a
if and only if b is less than a. It follows from the first cancellation law that
if subtraction is possible, the resulting number is unique; for if b + x = a
and b + y = a we get x = y. The result of subtracting b from a is denoted
by a − b. Rules for operating with the minus sign, such as a − (b − c) =
a − b + c, follow from the definition of subtraction and the commutative
and associative laws of addition.

Division. To divide a number a by a number b means to find, if possible,
a number x such that bx = a. If such a number exists it is denoted by a

b or
a/b. It follows from the second cancellation law that if division is possible
the resulting number is unique.

All the laws set out above become more or less obvious when one gives
addition and multiplication their primitive meanings as operations on sets
of objects. For example, the commutative law of multiplication becomes
obvious when one thinks of objects arranged in a rectangular pattern with
a rows and b columns (fig. 1); the total number of objects is ab and is also
ba. The distributive law becomes obvious when one considers the arrange-
ment of objects indicated in fig. 2; there are a(b + c) objects altogether
and these are made up of ab objects together with ac more objects. Rather
less obvious, perhaps, is the associative law of multiplication, which asserts
that a(bc) = (ab)c. To make this apparent, consider the same rectangle as
in fig. 1, but replace each object by the number c. Then the sum of all the
numbers in any one row is bc, and as there are a rows the total sum is a(bc).
On the other hand, there are altogether ab numbers each of which is c, and
therefore the total sum is (ab)c. It follows that a(bc) = (ab)c, as stated.

b

a

Fig. 1

b c

a

Fig. 2

The laws of arithmetic, supplemented by the principle of induction
(which we shall discuss in the next section), form the basis for the logi-
cal development of the theory of numbers. They allow us to prove general
theorems about the natural numbers without it being necessary to go back
to the primitive meanings of the numbers and of the operations carried out
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4 The Higher Arithmetic

on them. Some quite advanced results in the theory of numbers, it is true,
are most easily proved by counting the same collection of things in two
different ways, but there are not very many such.

Although the laws of arithmetic form the logical basis for the theory of
numbers (as indeed they do for most of mathematics), it would be extremely
tedious to refer back to them for each step of every argument, and we shall
in fact assume that the reader already has some knowledge of elementary
mathematics. We have set out the laws in detail in order to show where the
subject really begins.

We conclude this section by discussing briefly the relationship between
the system of natural numbers and two other number-systems that are
important in the higher arithmetic and in mathematics generally, namely
the system of all integers and the system of all rational numbers.

The operations of addition and multiplication can always be carried out,
but those of subtraction and division cannot always be carried out within the
natural number system. It is to overcome the limited possibility of subtrac-
tion that there have been introduced into mathematics the number 0 and the
negative integers −1,−2, . . . . These, together with the natural numbers,
form the system of all integers:

. . . ,−2,−1, 0, 1, 2, . . . ,

within which subtraction is always possible, with a unique result. One
learns in elementary algebra how to define multiplication in this extended
number-system, by the ‘rule of signs’, in such a way that the laws of arith-
metic governing addition and multiplication remain valid. The notion of
order also extends in such a way that the laws governing it remain valid,
with one exception: the law that if a < b then ac < bc remains true only
if c is positive. This involves an alteration in the second cancellation law,
which is only true in the extended system if the factor cancelled is not 0:

if ax = ay then x = y, provided that a �= 0.

Thus the integers (positive, negative and zero) satisfy the same laws of
arithmetic as the natural numbers except that subtraction is now always pos-
sible, and that the law of order and the second cancellation law are modified
as just stated. The natural numbers can now be described as the positive
integers.

Let us return to the natural numbers. As we all know, it is not always
possible to divide one natural number by another, with a result which is
itself a natural number. If it is possible to divide a natural number b by a
natural number a within the system, we say that a is a factor or divisor of b,
or that b is a multiple of a. All these express the same thing. As illustrations
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Factorization and the Primes 5

of the definition, we note that 1 is a factor of every number, and that a is
itself a factor of a (the quotient being 1). As another illustration, we observe
that the numbers divisible by 2 are the even numbers 2, 4, 6, . . . , and those
not divisible by 2 are the odd numbers 1, 3, 5, . . . .

The notion of divisibility is one that is peculiar to the theory of numbers,
and to a few other branches of mathematics that are closely related to the
theory of numbers. In this first chapter we shall consider various questions
concerning divisibility which arise directly out of the definition. For the
moment, we merely note a few obvious facts.

(i) If a divides b then a � b (that is, a is either less than or equal to b).
For b = ax , so that b − a = a(x − 1), and here x − 1 is either 0 or a
natural number.

(ii) If a divides b and b divides c then a divides c. For b = ax and c = by,
whence c = a(xy), where x and y denote natural numbers.

(iii) If two numbers b and c are both divisible by a, then b + c and b − c
(if c < b) are also divisible by a. For b = ax and c = ay, whence

b + c = a(x + y) and b − c = a(x − y).

There is no need to impose the restriction that b > c when consider-
ing b − c in the last proposition, if we extend the notion of divisibility
to the integers as a whole in the obvious way: an integer b is said to be
divisible by a natural number a if the quotient b

a is an integer. Thus a
negative integer −b is divisible by a if and only if b is divisible by a.
Note that 0 is divisible by every natural number, since the quotient is
the integer 0.

(iv) If two integers b and c are both divisible by the natural number a, then
every integer that is expressible in the form ub + vc, where u and v
are integers, is also divisible by a. For b = ax and c = ay, whence
ub + vc = (ux + vy)a. This result includes those stated in (iii) as
special cases; if we take u and v to be 1 we get b + c, and if we take u
to be 1 and v to be −1 we get b − c.

Just as the limitation on the possibility of subtraction can be removed
by enlarging the natural number system through the introduction of 0 and
the negative integers, so also the limitation on the possibility of division
can be removed by enlarging the natural number system through the intro-
duction of all positive fractions, that is, all fractions a

b , where a and b
are natural numbers. If both methods of extension are combined, we get
the system of rational numbers, comprising all integers and all fractions,
both positive and negative. In this system of numbers, all four operations

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-72236-0 - The Higher Arithmetic: An Introduction to the Theory of
Numbers, Eighth Edition
H. Davenport
Excerpt
More information

http://www.cambridge.org/9780521722360
http://www.cambridge.org
http://www.cambridge.org


6 The Higher Arithmetic

of arithmetic—addition, multiplication, subtraction and division—can be
carried out without limitation, except that division by zero is necessarily
excluded.

The main concern of the theory of numbers is with the natural num-
bers. But it is often convenient to work in the system of all integers or in
the system of rational numbers. It is, of course, important that the reader,
when following any particular train of reasoning, should note carefully
what kinds of numbers are represented by the various symbols.

2. Proof by induction
Most of the propositions of the theory of numbers make some assertion
about every natural number; for example Lagrange’s theorem asserts that
every natural number is representable as the sum of at most four squares.
How can we prove that an assertion is true for every natural number?
There are, of course, some assertions that follow directly from the laws of
arithmetic, as for instance algebraic identities like

(n + 1)2 = n2 + 2n + 1.

But the more interesting and more genuinely arithmetical propositions are
not of this simple kind.

It is plain that we can never prove a general proposition by verifying that
it is true when the number in question is 1 or 2 or 3, and so on, because
we cannot carry out infinitely many verifications. Even if we verify that a
proposition is true for every number up to a million, or a million million,
we are no nearer to establishing that it is true always. In fact it has some-
times happened that propositions in the theory of numbers, suggested by
extensive numerical evidence, have proved to be wide of the truth.

It may be, however, that we can find a general argument by which we
can prove that if the proposition in question is true for all the numbers

1, 2, 3, . . . , n − 1,

then it is true for the next number, n. If we have such an argument, then the
fact that the proposition is true for the number 1 will imply that it is true
for the next number, 2; and then the fact that it is true for the numbers 1
and 2 will imply that it is true for the number 3, and so on indefinitely. The
proposition will therefore be true for every natural number if it is true for
the number 1.

This is the principle of proof by induction. The principle relates to propo-
sitions which assert that something is true for every natural number, and
in order to apply the principle we need to prove two things: first, that the
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Factorization and the Primes 7

assertion in question is true for the number 1, and secondly that if the asser-
tion is true for each of the numbers 1, 2, 3, . . . , n−1 preceding any number
n, then it is true for the number n. Under these circumstances we conclude
that the proposition is true for every natural number.

A simple example will illustrate the principle. Suppose we examine the
sum 1 + 3 + 5 + · · · of the successive odd numbers, up to any particular
one. We may notice that

1 = 12, 1 + 3 = 22, 1 + 3 + 5 = 32, 1 + 3 + 5 + 7 = 42,

and so on. This suggests the general proposition that for every natural num-
ber n, the sum of the first n odd numbers is n2. Let us prove this general
proposition by induction. It is certainly true when n is 1. Now we have to
prove that the result is true for any number n, and by the principle of induc-
tion we are entitled to suppose that it is already known to be true for any
number less than n. In particular, therefore, we are entitled to suppose that
we already know that the sum of the first n − 1 odd numbers is (n − 1)2.
The sum of the first n odd numbers is obtained from this by adding the nth
odd number, which is 2n − 1. So the sum of the first n odd numbers is

(n − 1)2 + (2n − 1),

which is in fact n2. This proves the proposition generally.
Proofs by induction are sometimes puzzling to the inexperienced, who

are liable to complain that ‘you are assuming the proposition that is to be
proved’. The fact is, of course, that a proposition of the kind now under
consideration is a proposition with an infinity of cases, one for each of the
natural numbers 1, 2, 3, . . .; and all that the principle of induction allows
us to do is to suppose, when proving any one case, that the preceding cases
have already been settled.

Some care is called for in expressing a proof by induction in a form
which will not cause confusion. In the example above, the proposition in
question was that the sum of the first n odd numbers is n2. Here n is any one
of the natural numbers, and, of course, the statement means just the same
if we change n into any other symbol, provided we use the same symbol in
the two places where it occurs. But once we have embarked on the proof, n
becomes a particular number, and we are then in danger of using the same
symbol in two senses, and even of writing such nonsense as ‘the proposition
is true when n is n−1’. The proper course is to use different symbols where
necessary.

From a commonsense point of view, nothing can be more obvious than
the validity of proof by induction. Nevertheless it is possible to debate
whether the principle is in the nature of a definition or a postulate or an act
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8 The Higher Arithmetic

of faith. What seems at any rate plain is that the principle of induction is
essentially a statement of the rule by which we enumerate the natural num-
bers in order: having enumerated the numbers 1, 2, . . . , n − 1 we continue
the enumeration with the next number n. Thus the principle is in effect an
explanation of what is meant by the words ‘and so on’, which must occur
whenever we attempt to enumerate the natural numbers.

3. Prime numbers
Obviously any natural number a is divisible by 1 (the quotient being a)
and by a (the quotient being 1). A factor of a other than 1 or a is called
a proper factor. We all know that there are some numbers which have no
proper factors, and these are called prime numbers, or primes. The first few
primes are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . . .

Whether 1 should be counted as a prime or not is a matter of convention,
but it is simpler (as we shall see later) not to count 1 as a prime.

A number which is neither 1 nor a prime is said to be composite; such a
number is representable as the product of two numbers, each greater than 1.
It is well known that by continued factorization one can eventually express
any composite number as a product of primes, some of which may of course
be repeated. For example, if we take the number 666, this has the obvious
factor 2, and we get 666 = 2 × 333. Now 333 has the obvious factor 3, and
333 = 3 × 111. Again 111 has the factor 3, and 111 = 3 × 37. Hence

666 = 2 × 3 × 3 × 37,

and this is a representation of the composite number 666 as a product of
primes. The general proposition is that any composite number is repre-
sentable as a product of primes. Or, what comes to the same thing, any
number greater than 1 is either a prime or is expressible as a product of
primes.

To prove this general proposition, we use the method of induction. In
proving the statement for a number n, we are entitled to assume that it has
already been proved for any number less than n. If n is a prime, there is
nothing to prove. If n is composite, it can be represented as ab, where a
and b are both greater than 1 and less than n. We know that a and b are
either primes or are expressible as products of primes, and on substituting
for them we get n expressed as a product of primes. This proof is indeed so
simple that the reader may think it quite superfluous. But the next general
proposition on factorization into primes will not be so easily proved.
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Factorization and the Primes 9

The series 2, 3, 5, 7, . . . of primes has always exercised human curiosity,
and later we shall mention some of the results that are known about it. For
the moment, we content ourselves with proving, following Euclid (Book
IX, Prop. 20), that the series of primes never comes to an end. His proof is a
model of simplicity and elegance. Let 2, 3, 5, . . . , P be the series of primes
up to a particular prime P . Consider the number obtained by multiplying
all these primes together, and then adding 1, that is

N = 2 × 3 × 5 × · · · × P + 1.

This number cannot be divisible by 2, for then both the numbers N and
2 × 3 × 5 × · · · × P would be divisible by 2, and therefore their difference
would be divisible by 2. This difference is 1, and is not divisible by 2. In
the same way, we see that N cannot be divisible by 3 or by 5 or by any
of the primes up to and including P . On the other hand, N is divisible by
some prime (namely N itself if N is a prime, or any prime factor of N if
N is composite). Hence there exists a prime which is different from any of
the primes 2, 3, 5, . . . , P , and so is greater than P . Consequently the series
of primes never comes to an end.

4. The fundamental theorem of arithmetic
It was proved in the preceding section that any composite number is
expressible as a product of primes. As an illustration, we factorized 666
and obtained

666 = 2 × 3 × 3 × 37.

A question of fundamental importance now suggests itself. Is such a factor-
ization into primes possible in more than one way? (It is to be understood,
of course, that two representations which differ merely in the order of the
factors are to be considered as the same, e.g. the representation 3×2×37×3
is to be considered the same as that printed above.) Can we conceive that
666, for example, has some other representation as a product of primes?
The reader who has no knowledge of the theory of numbers will probably
have a strong feeling that no other representation is possible, but he will not
find it a very easy matter to construct a satisfactory general proof.

It is convenient to express the proposition in a form in which it applies
to all natural numbers, and not only to composite numbers. If a number is
itself a prime, we make the convention that it is to be regarded as a ‘prod-
uct’ of primes, where the ‘product’ has only one factor, namely the number
itself. We can go even a stage further, and regard the number 1 as an ‘empty’
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10 The Higher Arithmetic

product of primes, making the convention that the value of an empty prod-
uct is deemed to be 1. This is a convention which is useful not only here but
throughout mathematics, since it permits the inclusion in general theorems
of special cases which would otherwise have to be excluded, or provided
for by a more complicated enunciation.

With these conventions, the general proposition is that any natural num-
ber can be represented in one and only one way as a product of primes.
This is the so-called fundamental theorem of arithmetic, and its history is
strangely obscure. It does not figure in Euclid’s Elements, though some of
the arithmetical propositions in Book VII of the Elements are almost equiv-
alent to it. Nor is it stated explicitly even in Legendre’s Essai sur la théorie
des nombres of 1798. The first clear statement and proof seem to have been
given by Gauss in his famous Disquisitiones Arithmeticae of 1801. Per-
haps the omission of the theorem from Euclid explains why it is passed
over without explanation in many schoolbooks. One of them (still in use)
describes it as a ‘law of thought’, which it certainly is not.

We now give a direct proof of the uniqueness of factorization into
primes. Later (in §7) we shall give another proof, which will be entirely
independent of the present one.

First there is a preliminary remark to be made. If the factorization of a
particular number m into primes is unique, each prime factor of m must
occur in that factorization. For if p is any prime which divides m, we have
m = pm′ where m′ is some other number, and if we now factorize m′ into
primes we obtain a factorization of m into primes by simply putting on the
additional factor p. Since there is supposed to be only one factorization of
m into primes, p must occur in it.

We prove the uniqueness of factorization by induction. This requires us
to prove it for any number n, on the assumption that it is already established
for all numbers less than n. If n is itself a prime, there is nothing to prove.
Suppose, then, that n is composite, and has two different representations as
products of primes, say

n = pqr . . . = p′q ′r ′ . . . ,

where p, q, r , . . . and p′, q ′, r ′, . . . are all primes. The same prime can-
not occur in both representations, for if it did we could cancel it and get
two different representations of a smaller number, which is contrary to the
inductive hypothesis.

We can suppose without loss of generality that p is the least of the primes
occurring in the first factorization. Since n is composite, there is at least
one prime besides p in the factorization, and therefore n � p2. Similarly
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