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Rates and their properties

Rates are ratios constructed to compare the change in one quantity to the
change in another. For example, postal rates are the price per unit weight
for mailing a letter (price per ounce); miles divided by time produces a rate
of speed (miles per hour). However, to understand and clearly interpret a
rate applied to human survival data, a more detailed description is neces-
sary. This description begins with Isaac Newton, who in the 17th century
mathematically defined a rate and derived many of its properties.

The key to describing human survival, measured by rates of death or
disease, is a specific function, traditionally denoted by S(t), called the survival
function. A survival function produces the probability of surviving beyond a
specific point in time (denoted t). In symbols, a formal definition is

S(t) = P (surviving from time = 0 to time = t)

= P (surviving during interval = [0, t])

or, equivalently,

S(t) = P (surviving beyond time t) = P (T ≥ t).

Because S(t) is a probability, it is always between zero and one for all values
of t (0 ≤ S(t) ≤ 1).

A simple survival function, S(t) = e−0.04t , illustrates this concept (Fig-
ure 1.1). Perhaps such a function describes the pattern of 18th-century mor-
tality for any age t (probability of living beyond age t). The probability
of surviving beyond t = 20 years is, for example, S(20) = P (T ≥ 20) =
e−0.04(20) = 0.449 (Figure 1.1). Similarly, this survival function dictates that
half the population lives beyond 17.327 years. Thus,

P (surviving beyond 17.327 years) = S(T ≥ 17.327) = e−0.04(17.327) = 0.50.
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Figure 1.1. A simple survival function—S(t) = P(T ≤ t) = e−0.04t .

To create a rate that does not depend on the length of the time interval,
Newton defined an instantaneous rate as the change in S(t) as the length
of the time interval (denoted δ) becomes infinitesimally small. This version
of a rate is the derivative of the survival function S(t) with respect to t or, in
symbols,

the derivative of S(t) = d

dt
S(t).

The derivative of a function is a rich concept and a complex mathematical
tool completely developed in a first-year calculus course. From a practical
point of view, the derivative is closely related to the slope of a line between
two points (an appendix at the end of the chapter contains a few details).
That is, for two points in time (t and t + δ), the derivative is approximately

d

dt
S(t) ≈ S(t + δ) − S(t)

δ

= slope of a straight line between S(t) and S(t + δ).
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3 Rates and their properties

When the change in the survival function S(t)[S(t) to S(t + δ)] is divided
by the corresponding change in time t (t to t + δ), one version of a rate
becomes

rate = change in S(t)

change in time
= S(t + δ) − S(t)

(t + δ) − t
= S(t + δ) − S(t)

δ
.

The proposed rate, constructed from two specific values of the survival
function S(t) and the length of the time interval δ, consists of the change
(decrease) in the survival function S(t) relative to the change (increase) in
time (δ). For small values of δ, this rate (the slope of a line) hardly differs
from an instantaneous rate. In the following, the slope of a line (one kind of
rate) is frequently used to approximate the derivative of the survival function
at a specific point in time, an instantaneous rate.

Newton’s instantaneous rate is rarely used to describe mortality or disease
data, because it does not reflect risk. A homicide rate, for example, of 10 deaths
per month is easily interpreted in terms of risk only when it refers to a
specific population size. A rate of 10 deaths per month in a community of
1,000 individuals indicates an entirely different risk than the same rate in a
community of 100,000.

When the instantaneous rate (d/dt)S(t) is divided by the survival function
S(t), it reflects risk. To measure risk, a relative rate is created, where

instantaneous relative rate = h(t) = −
d

dt
S(t)

S(t)
.

Multiplying by −1 makes this relative rate a positive quantity, because S(t)
is a decreasing function (negative slope). An instantaneous relative rate h(t)
is usually called a hazard rate in human populations and a failure rate in
other contexts. The same rate is sometimes called the force of mortality or an
instantaneous rate of death or, from physics, relative velocity.

Two properties of a hazard rate complicate its application to collected data.
The exact form of the survival function S(t) must be known for all values of
time t and the hazard rate is instantaneous. Knowledge is rarely available to
unequivocally define S(t) completely, instantaneous quantities are not intu-
itive, and interpretation frequently requires special mathematical/statistical
tools.
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4 Survival Analysis for Epidemiologic and Medical Research

Instead of an instantaneous rate, an average rate is typically used to measure
risk, particularly from epidemiologic and medical survival data. Formally, a
rate averaged over a time interval from t to t + δ is

average rate = S(t) − S(t + δ)∫ t+δ

t S(u)du
.

In more natural terms, an average rate over a specified time period is simply
the proportion of individuals who died (“mean number of deaths”) divided
by the mean survival time for all individuals at risk during that period.
Equally, an average rate is the total number of individuals who died divided by
the total accumulated time at risk. Geometrically, the value in the numerator
of an average rate is the decrease in the survival probability between the two
points t and t + δ. The value of the integral in the denominator is the area
under the survival curve S(t) between the same two points and equals the
mean survival time of individuals who lived the entire interval or died during
the interval.

For the survival function S(t) = e−0.04t and the time interval t = 20 to
t = 25 years (δ = 5 years), the proportion of individuals who died (mean
number of deaths) is S(20) − S(25) = e−0.80 − e−1.00 = 0.449 − 0.368 =
0.081 (Figure 1.1). The mean survival time for all individuals at risk (area)
during the interval 20 to 25 years (δ = 5) is

area =
t+δ∫
t

S(u)du =
25∫

20

e−0.04udu

= e−0.04(20) − e−0.04(25)

0.04
= 0.449 − 0.368

0.04
= 0.081

0.04
= 2.036 person-years.

Thus, the mean survival time lived by individuals who survived the entire
five-year interval and those who died during the interval (20–25 years) is
2.036 years. A mean time at risk of 2.036 years makes the average mortality
rate

average rate = mean number of death

mean survival time
= e−0.80 − e−1.00

2.036
= 0.081

2.036
= 0.040 deaths per person-year
= 40 deaths per 1,000 person-years.
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Figure 1.2. The geometry of an approximate average rate for the interval t = 20 to t + δ = 50

(approximate rate = 0.036 and exact = rate = 0.040).

In many situations, particularly in human populations, the area under
the survival curve is directly and accurately approximated without defining
the survival function S(t), except at two points. When the survival function
between the two points t and t + δ is a straight line, the area under the curve
has a simple geometric form. It is a rectangle plus a triangle (Figure 1.2).
Furthermore,

area of the rectangle = width × height = ([t + δ] − t) × S(t + δ)

= δS(t + δ)

and

area of the triangle = 1
2 base × altitude

= 1
2 ([t + δ] − t) × [S(t) − S(t + δ)]

= 1
2δ[S(t) − S(t + δ)],
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6 Survival Analysis for Epidemiologic and Medical Research

Table 1.1. Approximate and exact areas for the time interval t = 20 and
t + δ = 20 + δ for the survival function S(t) = e−0.04t (exact rate = 0.04).

δ t to t + δ S(t) S(t + δ) d(t) area∗ area∗∗ rate∗∗

30 20 to 50.0 0.449 0.135 0.314 7.850 8.770 0.036

20 20 to 40.0 0.449 0.202 0.247 6.186 6.512 0.038

10 20 to 30.0 0.449 0.301 0.148 3.703 3.753 0.039

5 20 to 25.0 0.449 0.368 0.081 2.036 2.043 0.039

1 20 to 21.0 0.449 0.432 0.018 0.440 0.441 0.040

0.1 20 to 20.1 0.449 0.448 0.002 0.045 0.045 0.040

∗ = exact S(t)
∗∗ = approximate (straight line).

making the total area

area = rectangle + triangle

= δS(t + δ) + 1
2δ[S(t) − S(t + δ)] = 1

2δ[S(t) + S(t + δ)].

Figure 1.1 displays the geometry for the survival function S(t) = e−0.04t . For
the interval t = 20 to t + δ = 25(δ = 5), the area of the rectangle is δS(25) =
5(0.368) = 1.839 and the area of the triangle is 1

2δ[S(20) − S(25)] =
1
2 (5)[0.449 − 0.368] = 0.204, making the total area 1.839 + 0.204 = 2.043
(mean time-at-risk during the interval). Again, the mean number of deaths
is 0.0814. A measure of risk becomes the approximate average rate =
0.0814/2.043 = 0.039 (exact = 0.04) or 39 deaths per 1,000 person-years.

The approximate area is usually an accurate estimate of the exact area
because the human survival curve in most situations is approximately a
straight line over a specific and moderately small time interval. More simply,
when a straight line and part of a survival function S(t) are not very different,
using an approximation based on a straight line works well [straight line ≈
S(t)]. Table 1.1 and Figure 1.2 illustrate this similarly for t = 20 years, where
the exact average rate is 0.04 for all time intervals.

Because S(t) represents the probability of surviving beyond time t, the
difference S(t) − S(t + δ) = d(t) represents the probability of dying in the
interval from t to t + δ. In addition, the approximate area under the survival
curve S(t) has three equivalent forms, δ[S(t) − 1

2 d(t)] or δ[S(t + δ) +
1
2 d(t)] or 1

2δ[S(t) + S(t + δ)], for the time interval t to t + δ. All three
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7 Rates and their properties

expressions are the sum of the mean time lived by those who survived the
entire interval [rectangle = δS(t + δ)] plus the mean survival time lived by
those who died [triangle = 1

2δd(t)]. Therefore, to calculate the mean number
of deaths and to approximate the mean time at risk, all that is needed is the
values of S(t) at the two points in time, namely t and t + δ. The ratio of
these two mean values is the average approximate mortality rate.

Example
Suppose that out of 200 individuals at risk, 100 individuals were alive Jan-
uary 1, 2004, and by January 1, 2006, suppose 80 of these individuals remain-
ed alive. In symbols, t = 2004, t + δ = 2006 (δ = 2 years), S(2004) = 100/

200 = 0.50, and S(2006) = 80/200 = 0.40, making the proportion of the
original 200 at-risk individuals who died during these two years d(2004) =
S(2004) − S(2006) = 0.50 − 0.40 = 0.10 or 20/200 = 0.10. The approx-
imate area enclosed by the survival curve for this δ = 2-year period is
1
2 · 2(0.50 + 0.40) = 0.90 person-years (area). The average approximate rate
becomes R = (0.50 − 0.40)/0.90 = 0.10/0.90 = 0.111 or, multiplying by
1,000, the rate is 111 deaths per 1,000 person-years. Rates are frequently
multiplied by a large constant value to produce values greater than one (pri-
marily to avoid small fractions). The mortality rate R reflects the approximate
average risk of death over the period of time from 2004 to 2006 experienced
by the originally observed 200 individuals. In addition, the total accumu-
lated person-years lived by these 200 individuals during the two-year period
is 200(0.90) = 180 person-years because the mean years lived by these 200
individuals during the interval is 0.90 years. Therefore, the number who died
(100 − 80 = 200(0.10) = 20) divided by the total person-years (180) is the
same approximate average rate,

average rate = R = total deaths

total person-years
= 20

180
= 0.10

0.90
= 0.111.

The example illustrates the calculation of an approximate average rate
free from the previous two constraints. It is not necessary to define the
survival function S(t) in detail and the rate is not instantaneous. The only
requirements are that the two values S(t) and S(t + δ) be known or accurately
estimated and the survival curve be at least close to a straight line over the
time period considered. Both conditions are frequently fulfilled by routinely
collected human data providing a huge variety of mortality and disease rates
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8 Survival Analysis for Epidemiologic and Medical Research

(see the National Center for Health Statistics or the National Cancer Institute
Web site—http://www.cdc.gov/nchs/ or http://www.nci.nih.gov).

It is important to note (or review) the equivalence of two ways to calculate a
rate. An approximate average rate is calculated by dividing the mean number
of deaths (the proportion of deaths) that occur during an interval by the
mean survival time for that interval. That is, the ratio of means is

approximate average rate = mean number of deaths

mean survival time

= d(t)
1
2δ[S(t) + S(t + δ)]

.

Or, more usually but less intuitively, the same rate calculated from a specific
number of individuals (denoted l) in terms of deaths and total person-years
is

approximate average rate = total number of deaths

total person-years at-risk

= ld(t)

l
{

1
2δ[S(t) + S(t + δ)]

} .

These two rates are identical.
An approximate average rate is sometimes calculated by dividing the

observed number of deaths by the number of individuals alive at the mid-
point of the interval considered. For example, for the year 2000 in Marin
County, California, there were 247,653 women alive halfway through the
year and 494 deaths from cancer for the entire year. The annual average
cancer mortality rate becomes 494 deaths divided by the midinterval count
of 247,653 persons, and the approximate average rate = (494/247,653) ×
100,000 = 199.5 deaths per 100,000 person-years. This “short cut” is no
more than an application of the fact that the midinterval population for
l individuals is approximately the total accumulated person-years at risk
or, in symbols, the midinterval population l × δS(t + 1

2δ) is approximately
l × 1

2δ[S(t) + S(t + δ)] and is exact when S(t) is a straight line.
A number of ways exist to calculate an approximate average rate from mor-

tality data based on the assumption that a straight line closely approximates
the survival function. The following example illustrates three methods using
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9 Rates and their properties

Table 1.2. U.S. mortality rates (all causes of death) age 65–74 for the
years 1999, 2000, and 2001.

Person-years

i Year Deaths (di) (pyrsi ) Rate/100,000

1 1999 387,437 16,167,771 2396.4

2 2000 376,986 16,100,428 2341.5

3 2001 367,128 15,969,452 2298.9

Total 1,131,551 48,237,651 2345.8

U.S. mortality data for individuals aged 65 to 74 during the years 1999–2001
(Table 1.2).

Method 1:

rate =
∑

di∑
pyrsi

= 1,131,551

48,237,651
= 2,345.8 deaths per 1000,000 person-years

Method 2:

rate = d2

pyrs2

= 376,986

16,100,428
= 2,341.5 deaths per 100,000 person-years

and

Method 3:

rate =
∑

di

3 × pyrs2

= 1,131,551

3 × 16,1000,428

= 2,342.7 deaths per 100,000 person-years.

The three methods produce essentially the same average mortality rate
because the change in human mortality over short periods of time is usually
close to linear.

Another frequent measure of risk is a probability. A probability, defined in
its simplest terms, is the number of equally likely selected events (a subset)
that might occur divided by the total number of all equally likely relevant
events that could possibly occur (the entire set). In symbols, if n[A] represents
the number of selected events among a total of n equally likely events, then

probability of event A = P (A) = n[A]

n
.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71937-7 - Survival Analysis for Epidemiologic and Medical Research: A Practical Guide
Steve Selvin
Excerpt
More information

http://www.cambridge.org/0521719372
http://www.cambridge.org
http://www.cambridge.org


10 Survival Analysis for Epidemiologic and Medical Research

For example, the probability of death (denoted q) is q = d/n, where n[A] =
d represents the number of deaths among n individuals who could possi-
bly have died. The complementary probability of surviving is 1 − q = p =
(n − d)/n. Notice the explicit requirement that all n individuals be members
of a population with a proportion of q deaths and p survivors (next topic).
Other, more rigorous definitions of probability exist, but this basic definition
is sufficient for the following applications to survival analysis.

A probability is always zero (impossible event) or one (sure event) or
between zero and one. In addition, a probability is unitless and does not
depend directly on time. On the other hand, a rate can be any positive value,
is not unitless (per person-time), and depends directly on time. Nevertheless,
these two quantities are closely related. For an average approximate rate R
and a probability q ,

R = S(t) − S(t + δ)

δ[S(t) − 1
2 d(t)]

= S(t)/S(t) − S(t + δ)/S(t)

δ[S(t)/S(t) − 1
2 d(t)/S(t)]

= q

δ(1 − 1
2 q)

and thus

q = δR

1 + 1
2δR

,

where probability of death q is d(t)/S(t) for the interval (t, t + δ). The
probability of survival becomes 1 − q = p = S(t + δ)/S(t). Note that q ,
and necessarily p, are conditional probabilities, conditional on being alive at
time t. More specifically,

probability of death = q = P (death between t and t + δ | alive at time t)

= P (death between t and t + δ)

P (alive at time t)
= d(t)

S(t)
.

The probability of death or disease in human populations is almost always
small (p ≈ 1 or q ≈ 0), making the relationship between a rate and a proba-
bility primarily a function of the length of the time interval δ. In symbols, the
rate = R ≈ q/δ when 1

2δq ≈ 0. When the period of time considered is one
year, an average annual mortality rate and a probability of death typically
produce almost identical values (R ≈ q). These two quantities are more or
less interchangeable and, particularly in the study of human mortality and
disease, it often makes little practical difference which measure of risk is used.
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