
1
Introduction

Concurrent programming is the task of writing programs consisting of multiple inde-
pendent threads of control, called processes. Conceptually, we view these processes as
executing in parallel, but in practice their execution may be interleaved on a single pro-
cessor. For this reason, we distinguish between concurrency in a programming language,
and parallelism in hardware. We say that operations in a program are concurrent if they
can be executed in parallel, and we say that operations in hardware are parallel if they
overlap in time.

Operating systems, where there is a need to allow useful computation to be done in
parallel with relatively slow input/output (I/O) operations, provide one of the earliest
examples of concurrency. For example, during its execution, a program P might write
a line of text to a printer by calling the operating system. Since this operation takes
a relatively long time, the operating system initiates it, suspends P, and starts running
another program Q. Eventually, the output operation completes and an interrupt is re-
ceived by the operating system, at which point it can resume executing P. In addition to
introducing parallelism and hiding latency, as in the case of slow I/O devices, there are
other important uses of concurrency in operating systems. Using interrupts from a hard-
ware interval timer, the operating system can multiplex the processor among a collection
of user programs, which is called time-sharing. Most time-sharing operating systems
allow user programs to interact, which provides a form of user-level concurrency. On
multiprocessors, the operating systems are, by necessity, concurrent programs; further-
more, application programs may use concurrent programming to exploit the parallelism
provided by the hardware.

One important motivation for concurrent programming is that processes are a useful
abstraction mechanism: they provide encapsulation of state and control with well-defined
interfaces. Unfortunately, if the mechanisms for concurrent programming are too expen-
sive, then programmers will break the natural abstraction boundaries in order to ensure
acceptable performance. The concurrency provided by operating system processes is

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org


2 1 Introduction

the most widespread mechanism for concurrent programming. But, there are several
disadvantages with using system-level processes for concurrent programming: they are
expensive to create and require substantial memory resources, and the mechanisms for
interprocess communication are cumbersome and expensive. 1 As a result, even when
faced with a naturally concurrent task, application programmers often choose complex
sequential solutions to avoid the high costs of system-level processes.

Concurrent programming languages, on the other hand, provide notational support for
concurrent programming, and generally provide lighter-weight concurrency, often inside
a single system-level process. Thus, just as efficient subroutine linkages make proce-
dural abstraction more acceptable, efficient implementations of concurrent programming
languages make process abstraction more acceptable.

1.1 Concurrency as a structuring tool

This book focuses on the use of concurrent programming for applications with natu-
rally concurrent structure. These applications share the property that flexibility in the
scheduling of computation is required. Whereas sequential languages force a total order
on computation, concurrent languages permit a partial order, which provides the needed
flexibility.

For example, consider the xrn program, which is a popular UNIX program that pro-
vides a graphical user interface for reading network news. It is both an example of an
interactive application and of a distributed-systems application, since it maintains a con-
nection to a remote news server. This program has a rather annoying “feature” that is a
result of its being programmed in a sequential language.2 If xrn loses its connection to
the remote news server (because the server goes down, or the connection times out), it
displays a message window (or “dialog box”) on the screen to inform the user of the lost
connection. Unfortunately, after putting up the window, but before writing the message,
xrn attempts to reestablish the connection, which causes it to hang until the server comes
back on line. Thus, you have the phenomenon of a blank message window appearing on
the user’s screen, followed by a long pause, followed by the simultaneous display of two
messages: the first saying that the connection has been lost, and a second saying that the
connection has been restored. Besides being an example of poor interface design, this
illustrates the kind of sequential orderings that concurrent programming easily avoids.

1It should be noted that most recent operating systems provide support for multiple threads of control inside a single
protection domain.

2This anecdote refers to version 6.17 of xrn.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org


1.1 Concurrency as a structuring tool 3

1.1.1 Interactive systems

Interactive systems, such as graphical user interfaces and window managers, are the pri-
mary motivation of much of the work described in this book, and the author believes that
they are one of the most important application areas for concurrent programming. Inter-
active systems are typically programmed in sequential languages, which results in awk-
ward program structures, since these programs are naturally concurrent. They must deal
with multiple asynchronous input streams and support multiple contexts, while maintain-
ing responsiveness. In the following discussion, we present a number of scenarios that
demonstrate the naturally concurrent structure of interactive software.

User interaction

Handling user input is the most complex aspect of an interactive program. An application
may be sensitive to multiple input devices, such as a mouse and keyboard, and may
multiplex these among multiple input contexts (e.g., different windows). Managing this
many-to-many mapping is usually the province of User Interface Management System
(UIMS) toolkits. Since most UIMS toolkits are implemented in sequential languages,
they must resort to various techniques to emulate the necessary concurrency. Typically,
these toolkits use an event-loop that monitors the stream of input events and maps the
events to call-back functions (or event handlers) provided by the application programmer.
In effect, this structure is a poor-man’s concurrency: the event-handlers are coroutines,
and the event-loop is the scheduler.

The call-back approach to managing user input leads to an unnatural program structure,
known as the “inverted program structure,” where the application program hands over
control to the library’s event-loop. While event-driven code is sometimes appropriate
for an application, this choice should be up to the application programmer, and not be
dictated by the library.

Multiple services

Interactive applications often provide multiple services; for example, a spreadsheet might
provide an editor for composing macros, and a window for viewing graphical displays
of the data, in addition to the actual spreadsheet. Each service is largely independent,
having its own internal state and control-flow, so it is natural to view them as independent
processes.

An additional benefit of using process abstraction to structure such services is that
it makes replication of services fairly easy. This is because processes are reentrant by
their very nature (i.e., they typically encapsulate their own state). In our spreadsheet
example, supporting multiple data sets or graphical views should be as easy as spawning
an additional process.

This is a situation where an “object-oriented” language might also claim benefits, since

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org


4 1 Introduction

each service could be encapsulated as an object. In many respects, processes and objects
provide the same kind of abstraction: hiding state and providing well-defined interfaces.
The obvious difference is that concurrent languages provide the additional benefit of
interleaved execution of services, whereas in a sequential object-oriented language the
execution of services must be serialized.3

Interleaving computation

Even on a uniprocessor, it is possible to gain performance benefits from concurrency. An
event driven interactive system has large amounts of “dead-time” between input events.
If an application receives a hundred input events per second (which is quite a lot), then it
has millions of instructions it can execute between events. Since most events can be han-
dled in a few thousand instructions (e.g., add a character to an input buffer, and echo it),
there is an opportunity to execute other useful computation between input events. While
multi-tasking operating systems support this kind of interleaving between processes, it is
difficult to interleave computation with I/O inside a single sequential program. Applica-
tions that are programmed in a concurrent language, however, can exploit this interleav-
ing for “free.” Furthermore, as processors become faster, the amount of useful work that
can be done between input events increases.

In addition to the performance benefits, interleaving computation is very important
to the responsiveness of an application. For example, a user of a document preparation
system may want to edit one part of a document while another part is being formatted.
Since formatting may take a significant amount of time, providing a responsive interface
requires interleaving formatting and editing. A traditional UIMS toolkit makes it diffi-
cult to write applications that provide responsive interactive interfaces and do substantial
computation, since the application cannot handle events while computing. Typically, the
computation must be broken into short-duration chunks that will not affect responsive-
ness. This structure has the added disadvantage of destroying the separation between
the application and the interface. Concurrent programs, in contrast, avoid this problem
without any additional complexity.

Output-driven interfaces

The inverted program structure required by traditional UIMS toolkits has the disadvan-
tage of biasing a program’s structure towards input. The application is quiescent until the
user prods it, at which time it reacts in some way, and then waits for the next event. This
is fine for many applications, such as text editors, which do not have much to do when
the user’s attention is elsewhere, but it is a hindrance for applications with output-driven
interfaces.

3Of course, this restriction does not apply to concurrent object-oriented languages.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org


1.1 Concurrency as a structuring tool 5

Consider, for example, a computationally intensive simulation that maintains a graph-
ical display of its current state. The interface to this application is output-driven, since
under normal circumstances the display is updated only when a new state is computed.
But this application must also monitor window events, such as refresh and resize noti-
fications, so that it can redraw itself when necessary. In a sequential implementation,
the handling of these events must be postponed until the simulation is ready to update
the displayed information. Separating the display code and simulation code into separate
processes simplifies the handling of asynchronous redrawing.

Discussion

While the use of heavy-weight operating-system processes provides some support for
multiple services and interleaved computation, it does not address the other two sources
of concurrent program structure. Similarly, although event-loops and call-back functions
provide flexibility in reacting to user input, they bias the application towards an input-
driven model and do not provide much support for interleaved computation. A concurrent
language, on the other hand, addresses all of these concerns.

1.1.2 Distributed systems

Distributed programs are, by their very nature, concurrent; each processor, or node, in
a distributed system has its own state and control flow. But, in addition to the obvious
concurrency that results from executing on multiple processors, there are natural uses of
concurrency in the individual node programs.

As the story about xrn illustrated, synchronous communication over a network can
block a program for unacceptable periods of time. This phenomenon is called remote
delay, where the execution on one machine is delayed while waiting for a response from
another. Using multiple threads to manage such communications allows other tasks to be
interleaved with remote interactions.

Another performance problem that should be avoided in distributed programs is local
delay, where execution is blocked because some resource is unavailable. For example,
a file server might have to wait for a disk operation to complete before completing a
file operation. In a server that allows multiple outstanding requests, local delay can be
a serious bottleneck, since the delay associated with one request affects the servicing of
other requests. A solution to this is to use a separate local process for each outstanding
request; when one process experiences local delay, the others can still proceed. This is
essentially the same as using concurrency to hide I/O latency in operating systems.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org


6 1 Introduction

1.1.3 Other uses of concurrency

Reactive systems are another class of naturally concurrent programs. A reactive system
is one that reacts to its environment at a speed determined by its environment. Examples
of reactive systems include call processing, process control, and signal processing. User
interfaces and, to some extent, the node programs in distributed systems might be con-
sidered reactive systems, although they do not have the hard real-time requirements of
“pure” reactive systems.

Many other kinds of programs also have a naturally concurrent structure. Discrete
event simulations, for example, can be structured as a collection of processes represent-
ing the objects being simulated. Concurrency can also be used to provide a different
look at a sequential algorithm. For example, power series can be programmed elegantly
as dataflow networks. And, of course, concurrency is important in expressing parallel
algorithms.

1.2 High-level languages

Writing correct concurrent programs is a difficult task. In addition to the bugs that may
arise in sequential programming, concurrent programs suffer from their own particular
kinds of problems, such as races, deadlock, and starvation. What makes this even more
difficult is that concurrent programs execute nondeterministically, which means that a
program may work one time and fail the next. A common suggestion to address this
problem is to use formal methods and logical reasoning to verify that one’s program
satisfies various properties. While this is a useful pedagogical tool, it does not scale well
to large programs.

For large systems, one has to mostly rely on good design and careful implementation,
which is where the choice of programming language makes an important difference. A
high-level language with well-designed primitives is the most important ingredient in
helping the programmer write correct and robust software.

The question of which programming notation to use is often the subject of religious
debate. The trade-offs are fairly obvious: higher-level languages help programmer pro-
ductivity and improve the robustness of software, while lower-level languages allow more
programmer control over performance details. As implementation technology improves
(and computer time becomes cheaper), the trend has been to migrate towards higher-level
languages. While most people would agree that the performance lost when switching
from assembly language to C is well worth the improved programmer productivity, there
is no such consensus about the next step.

It is the view of the author that the higher-order language Standard ML (SML), which
provides the sequential substrate for the programming examples in this book, is a good

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org


1.3 Concurrent ML 7

candidate for the next step. SML provides a number of important benefits for program-
mers:

• A strong type system, which guarantees that programs will not have run-time type
errors (or “dump core”).

• A garbage collector, which improves modularity and prevents many kinds of mem-
ory management errors.

• An expressive module system, which supports large-scale software construction
and code reuse.

• Higher-order functions and polymorphism, which further support code reuse.

• A datatype mechanism and pattern matching facility, which provide a concise no-
tation for many data structures and algorithms.

• A well-defined semantics and independence from architectural details, which makes
code truly portable.

SML also provides a level of performance that is becoming competitive with lower-
level languages, such as C. In particular, there is a widely used and freely distributed
SML system, called Standard ML of New Jersey (SML/NJ), which provides quite good
performance.4 It is the author’s view that the notational advantages of programming in
SML outweigh the slight loss of performance, when compared toC. A thesis of this book
is that efficient system software can be written in a language such as SML.

1.3 Concurrent ML

This book uses a concurrent extension to SML, called Concurrent ML (CML), as its
primary programming notation. CML can either be viewed as a library, since it compiles
directly on top of SML/NJ, or as a language in its own right, since it defines a different
programming discipline.

Following the tradition of SML, CML is designed to provide high-level, but efficient,
mechanisms for concurrent programming. Its basic model of communication and syn-
chronization is synchronous message-passing (or rendezvous) on typed channels. Cre-
ation of both threads and channels is dynamic. Most importantly, CML provides a
mechanism for users to define new communication and synchronization abstractions.
This allows proper isolation of the implementation details, improving the robustness of

4Of course, this is application specific. SML beats C on many symbolic applications, but does not compete as well on
array-based numerical applications.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org


8 1 Introduction

the system. CML also addresses performance issues by providing efficient concurrency
primitives. CML has a number of features that make it a good programming notation for
building large-scale systems software:

• CML is a higher-order concurrent language. Just as SML supports functions
as first-class values, CML supports synchronous operations as first-class values.
These values, called events, provide the tools for building new synchronization
abstractions.

• It provides integrated support for I/O operations. Potentially blocking I/O opera-
tions, such as reading from an input stream, are full-fledged synchronous opera-
tions. Low-level support is also provided, from which distributed communication
abstractions can be constructed.

• It provides automatic reclamation of threads and channels, once they become in-
accessible. This permits a technique of speculative communication, which is not
possible in other concurrent languages and libraries.

• Scheduling is preemptive, which ensures that a single thread cannot monopolize
the processor. This allows “off-the-shelf” code to be incorporated in a concurrent
thread without destroying interactive responsiveness.

• It has an efficient implementation. Concurrency operations, such as thread cre-
ation, context switching, and message passing are very fast, often faster than lower-
level C-based libraries.

• CML is implemented on top of SML/NJ and is written completely in SML. It
runs on every hardware and operating system combination supported by SML/NJ
(although we have not had a chance to test all combinations).

CML, and the multithreaded user-interface toolkit eXene, which is built on top of CML,
have been used for a number of substantial applications (i.e., applications consisting of
at least 10,000 lines of SML/CML code).

Notes

The importance of using concurrency in the construction of user-interface software has
been argued by a number of people. Most notably by Pike [Pik89a, Pik94], and by
Gansner and the author [RG86, GR92]. A recent paper by Hauser et al. describes the
various paradigms of thread use in two large interactive software systems [HJT+93].

Liskov, Herlihy, and Gilbert give arguments as to why the node programs in dis-
tributed systems should either have dynamic thread creation or use one-way message

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org


1.3 Concurrent ML 9

passing (which they call asynchronous communication) for communicating with other
nodes [LHG86]. The basic argument is that without one of these features, avoiding per-
formance problems with local and remote delays requires too much complexity. These
arguments are also motivation for using a concurrent language, instead of a sequential
one, to program the nodes. Many languages and toolkits for distributed programming
provide some form of light-weight concurrency for use in the node programs. Examples
include the language Argus [LS83], the language SR [AOCE88, AO93], and the Isis
toolkit [BCJ+90].

In addition to the examples found in later chapters of this book, there are a number of
examples of the application of concurrency in the literature. McIlroy describes the imple-
mentation of various power series computations using the language newsqueak [McI90].
Andrews and Olsson illustrate the use of SR with a number of small application exam-
ples, including parallel numerical computation and simulation [AO93]. A book by Arm-
strong, et al. gives examples of the use of the concurrent language Erlang for a number
of applications, including database servers, real-time control, and telephony [AVWW96].
CML has also been used for experimental telephony applications [FO93].

It is expected that the reader is familiar with the 1997 revision of SML, since it is
the primary notation used in this book. A number of books give good introductions to
SML. The second edition of Paulson’s book [Pau96] gives a comprehensive description
of the language, concentrating mostly on “functional programming” using SML, but it
also discusses the module system and imperative features. A book by Ullman provides
an introduction to SML aimed at people with experience programming in traditional
imperative languages, and has been recently revised for SML’97 [Ull98]. Other books
include Reade’s book on functional programming using SML [Rea89], Stansifer’s primer
on ML [Sta92], and a book on abstract data types in SML by Harrison [Har93]. A re-
cent book by Okasaki describes many purely functional data structures [Oka98]; these
can be particularly useful for concurrent programming since there is no danger of shared
state. In addition, there are tutorials written by Harper [Har86] and Tofte [Tof89]. The
formal definition of SML and commentary on the definition were published as a pair of
books [MTH90, MT91]; a revised definition, which covers SML’97, has also been pub-
lished [MTHM97]. In addition, the SMLBasis Library Manual is available electronically
from

http://standardml.org/Basis/index.html

and also as a book [GR04].

This book also uses libraries and features that are specific to the SML/NJ system; these
are described as they are encountered. More detailed documentation is included in the
SML/NJ distribution, and is also available from the SML/NJ home page. An abridged

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org


10 1 Introduction

version of the CML Reference Manual is provided in Appendix A. As described in the
preface, both SML/NJ and CML are distributed electronically free of charge.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71472-3 - Concurrent Programming in ML
John H. Reppy
Excerpt
More information

http://www.cambridge.org/0521714729
http://www.cambridge.org
http://www.cambridge.org



