Index

Page numbers followed by 'f' indicate figures; page numbers followed by 't' indicate tables.

3PPP, 134f

AAADC (aromatic amino acid decarboxylase), 97, 98f

ABT089, 203

acetylcholine (ACh),
 in arousal pathways, 150, 152f
 and blocked dopamine receptors, 93f
 overactivity, 95
 reciprocal relationship with dopamine, 92f

acetylecholine-linked mechanisms, 202

ACP 103, 200

ACP-104, 129, 134f

ACR16, 134f

adipose tissue, insulin resistance in, 141, 144f

adolescence
 aggressiveness in, 179
 removal of synaptic connections, 68
 risperidone for treating psychotic disorders, 166

affective blunting, 5

affective flattening, as SSRI side effect, 110

affective symptoms
 dorsal vs. ventral regulation, 76f
 mesolimbic dopamine pathway role in, 28
 multiple disorders impacting, 15f
 pharmacy, 182, 184f
 in schizophrenia, shared with other disorders, 14

aggressive symptom pharmacy, 181f

aggressiveness, 10
 multiple disorders impacting, 15f, 16f
 in schizophrenic patients, 13

agitation,
 benzodiazepines for, 188
 and receptor conformation, 132f
 agranulocytosis, clozapine and, 164
 akathisia
 from aripiprazole, 175
 nigrostriatal pathway dopamine deficiencies and, 31
 alanine-serine-cysteine transporter (ASC-T), glial, 34
 alogia, 5, 6t
 alpha 1 adrenergic receptors
 atypical antipsychotic agents and, 139f
 and sedation, 151f
 alpha-1 receptor, antagonism, 94f
 alpha-2 adrenergic receptors, atypical antipsychotic agents and, 139f
 alpha 2 antagonists, 168
 alpha-4 beta-2 nicotinic acetylcholine receptor, 203
 alpha-7-nicotinic cholinergic agonists, 202
 alpha amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
 receptors, 40, 40f, 66f
 synapses with, 67f
 Alzheimer's disease, 180
 cognitive symptoms, 13
 excitotoxicity and, 56, 57f
 symptoms shared with schizophrenia, 12, 13, 13f
 amantadine, 194
 amenorrhea, 32, 90
 d-amino acid oxidase (DAO), 38f, 39
amisulpride, 130, 134f, 135f, 176, 183
and cardiometabolic risk, 140t
clinical actions of, 125
and diabetes, 171
for negative symptoms in schizophrenia, 182f
pharmacological icon, 177f
and QTc prolongation, 171
amoxapine (Asendin), 17, 174f
AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) glutamate receptors, 64
and synaptogenesis, 62
AMPA-kines, 199
amphetamines, 44
and dopamine release, 26
response to emotional input, 78
and schizophrenia symptoms, 75, 77f
amylin, 204
anhedonia, 5, 6t, 30
antagonists,
vs. inverse agonist, 105
vs. partial agonists, 132f
presynaptic, 199f
anticholinergic agents
D2 antagonism and, 93f
side effects, 95
antihistamines, 82
atypical, 96
administration frequency, 122
cardiometabolic risk and, 140t
cardiometabolic risk management, 145
hit-and-run receptor binding properties, 124f
hypothetical action over time, 125f
to improve schizophrenia symptoms, 109
pharmacological properties, 139f
and prolactin, 118f
properties, 119, 135f
and weight gain risk, 140t
avoiding sedation and enhancing long-term outcome, 155f
benzodiazepines to lead in or top off, 188f
best practices for monitoring and managing, 149f
cardiometabolic risk and, 137–150
combining two, 191
conventional, 91f
vs. atypical, 112f, 114f
D2 binding of, 123f
D2-receptor antagonist, 83
hypothetical action over time, 123f
muscarinic cholinergic blocking properties, 91, 95
pharmacological properties, 82–96
and prolactin, 118f
risk and benefits of long-term, 95
in use, 85f
as D2 dopamine receptor blockers, 27
first-generation, 83f, 96
high doses, 191f
links between binding properties and clinical actions, 136
low-potency, and dissociation, 124
“off-label” uses, 82
patient toleration of, 163
pharmacokinetics, 156–162
pharmacological properties, 162–179
prescribing information, 82
prophylactic, 192
receptor interactions for, 134
sedation as short-term tool, 152f
side effects and compliance, 153f
switching, 185, 187f
process to avoid, 187f
from sedating to nonsedating, 189f
antisocial personality disorder, 13
anxiety disorders
5HT1A receptors and, 103f
quetiapine for, 168f
anxious mood, 14
anxious self-punishment, 3
apathy, 3
histamine-1 with 5HT2C antagonism, 141f
aripiprazole, 129, 130, 134f–136f, 158, 175, 183
and cardiometabolic risk, 140t
as CYP 2D6 substrate, 158, 159f
and diabetes, 171
dosage with carbamazepine, 161f, 162
pharmacological icon, 176f
raising levels of, 160f
and sedation, 184, 186f
switching from sedating agent to, 189
and weight gain risk, 140t
aromatic amino acid decarboxylase (AAADC), 97, 98f
asenapine, 122f, 200
Asendin (amoxapine), 173, 174f
asociality, 5, 6t
assaultiveness, 10
atorvastatin
impaired, in schizophrenia, 11
attention deficit hyperactivity disorder (ADHD), 180
symptoms shared with schizophrenia, 14
attitudes, hostile, 3
atypical antipsychotic agents, 96
administration frequency, 122
cardiometabolic risk and, 140t
cardiometabolic risk management, 145
clozapine as, 163
vs. conventional, 112f, 114f
hit-and-run receptor binding properties, 124f
hypothetical action over time, 125f
properties, 119, 139f
and weight gain risk, 140t
auditory hallucinations, 5
autism, 180
CYP3A4 and discontinuation, 162f
CYP3A4 induced by, 161f
antipsychotic agents and, 14f, 171
atypical antipsychotic agents and, 1, 39, 139f
low risk antipsychotic agents, 140t
clozapine and, 164
receptors mediating, 1, 39f
brain. See also circuits
dopamine pathways in, 26f, 22–29
excitotoxicity in early development, 62f
insult and schizophrenia, 57
survival of wrong neurons, 59
focus on malfunctioning areas, 16
glutamate pathways in, 43f, 41–45
nucleus accumbens as pleasure center, 83
brain circuits, and schizophrenia symptoms, 14
brain damage, 180
brain-derived neurotrophic factor (BDNF), 58
5HT6 receptors and, 201
genes coding for, 63f
and long-term memory formation, 99
and synapse formation, 62, 65f
Brief Psychiatric Rating Scale, 7t
burnout of neuronal systems, 28
in schizophrenic patients, 54, 55f
buspirone, 201
calcium
excessive and excitotoxicity, 58f
overexcitation and dangerous opening of, 55
calcyon, genes for, 73f
cannabinoid antagonists, 203
carbamazepine (Equetro), 160
CYP4503A4 and discontinuation, 162f
CYP4503A4 induced by, 161f
atypical antipsychotic agents and, 143f, 171
typical antipsychotic agents and, 1, 39, 139f
olanzapine and, 165
receptors mediating, 139f
cardiovascular disease
atypical antipsychotic agents and, 137
risk of, 142f
cardiovascular side effects of, antipsychotic drugs, 95
catabolic enzymes, and dopamine breakdown, 21, 21f
dorsolateral prefrontal cortex, 19f
genes for, 73f
CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness), 153f
cerebral cortex, antipsychotic agent binding to postsynaptic 5HT2A receptors, 114f
aggressiveness in, 179
psychotic illness, symptoms shared with schizophrenia, 12, 13, 13f
risperidone for, 166
chlorpromazine (Thorazine), 82, 85t
cholecystokinin (CCK), 204
cholesterol (CCK), 204
dopamine hyperactivity in nigrostriatal pathway, 31
CHRNA (alpha-7 nicotinic cholinergic receptor), 72f
circadian rhythms
5HT7 receptors and, 103f
Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE), 153f
clinical practice vs. clinical trials, 178
symptom treatment, vs. disease treatment, 179
Clozapine (zuclopenthixol), 85t
clozapine, 136f, 157, 157f, 158, 184
5HT6-antagonist properties of, 201
for affective symptoms in schizophrenia, 183
for aggression management, 180, 181f
and antagonism of muscarinic cholinergic receptor, 146f
augmenting, 191
binding properties, 163f
and cardiometabolic risk, 140t
as CYP 2D6 substrate, 158, 159f
dosage with carbamazepine, 161f, 162
M3 receptors blocked by, 146f
for negative symptoms in schizophrenia, 182f
pharmacological icon, 163f
pharmacological properties, 163
potency, and dissociation, 124
raising levels of, 160f
rebound psychosis from discontinued, 185
for sedation, 185
for suicide reduction, 164, 184f
for symptom reduction in psychosis, 179
and weight gain risk, 140t
cocaine, and dopamine release, 26
as antipsychotic side effect, 95
from conventional antipsychotics, 92f
as SSRI side effect, 110

cognitive functioning, 5HT1A receptors and, 103f
5HT2C receptors and, 103f
dorsolateral prefrontal cortex (DLPFC) and, 18f, 27
impaired, 153
sedation and somnolence and, 154
mesocortical prefrontal cortex and, 17f
quantifying, 11

in schizophrenia, shared with other disorders, 13, 14f
serotonin receptors and, 99
cognitive symptom pharmacy, 182, 183f
“combs” (combination of medications) for schizophrenia, 190, 204
for symptom reduction in psychosis, 179
communication
dysfunction of, 5
inhibitors, 202
conceptual disorganization, 3
conduct disorder, 179
connectivity, genes affecting, 58
constipation
from conventional antipsychotics, 92f
and emotion and cognitive symptoms, 17f
and schizophrenia symptoms, 15
cortical arousal, neurotransmitters of, 152f
cortical brainstem glutamate projection, 43f, 44f
cortical pyramidal neurons
inhibition by 5HT1A receptors, 103f
cortico-striatal-thalamic-cortical (CSTC) loops, 46, 47f
corticoaccumbens projections, NMDA glutamate receptor hypofunction in, 51f
corticobrainstem glutamate pathways neurons, 45
and NMDA receptor hypofunction hypothesis of schizophrenia, 42–45
cortico-cortical glutamate pathways, 43f, 48–52
NMDA receptor regulation of, 53f
cortico-striatal glutamate pathways, 43f, 46
corticothalamic glutamate pathways, 43f, 46
cross titration, 186, 187f
getting caught in, 188f

CX516, 199
CX546, 200
CX619/Org 24448, 200
cytomemazine (Tercian), 85t, 96, 175
pharmacological icon, 175f
cyclic AMP (adenosine monophosphate), disruptions in, 70f
cycloselencine, 195, 197, 197f
cytochrome P450 (CYP450) enzyme systems, 156, 156f
CYP450 1A2 substrates, 157, 157f
and smoking, 158, 158f
cYP450 2C9, 158
CYP450 2C19, 157
CYP450 2D6, 157, 158, 159f
antidepressants as inhibitors, 160f
and genetic polymorphism for, 157, 157f
in risperidone conversion to paliperidone, 159f, 160f
inhibitors, 161f
CYP450 3A4, 158
inducers, 160
types, 156
d-氨基酸氧化酶激活剂(DAOA)，69f
和NMDA受体调节，68，68f
d-氨基酸氧化酶(DAO)，68，69f
DDC (DOPA decarboxylase)，20，20f
d-decarboxylase (DDC)，20，20f
dopa decarboxylase (DDC)，20，20f
dopamine，18，72f
5HT2A antagonists stimulation of release，105
and acetylcholine activity，93f
acetylcholine release inhibition，94
agonist actions at 5HT1A receptors and，131
in arousal pathways，150
brain pathways，26f，22–29
deficit in mesocortical projections to
dorsolateral prefrontal cortex，28
diverse levels in brain subsections，29
dorsolateral prefrontal cortex regulation by，19f
genes influencing，19f
hit-and-run theory，127f
interaction with serotonin，in nigrostriatal
dopamine pathway，107f，111f
levels in untreated schizophrenia，127f
neuronal tuning，29
neurotransmission spectrum，128f
untreated schizophrenia and after
serotonin dopamine antagonist，120f
pharmacologic mechanisms influencing，19f
prolactin inhibition by，117f
reciprocal relationship with acetylcholine，92f
5HT1A and 5HT2A receptor regulation，99，100
5HT2C receptors and，103f
serotonin inhibition of，106f
serotonin receptors influence on，105f
serotonin regulation of，108f–110f
synthesis，20f
termination of action，21f
and thalamic filter，48f
tuning output with serotonin 2A/dopamine-2
antagonists，119
dopamine D1-selective agonists，202
dopamine D2 partial agonists，96，128f，129，129f
aripiprazole as，175
dopamine D2 receptor agonists，128f，129
aripiprazole，128f，129
dopamine D2 receptors，21
antagonists，83，83f，84f，91，96，129
and anticholinergic agents，93f
integrated theory of schizophrenia and，88f
mesocortical dopamine pathway and，85f
nigrostriatal dopamine pathway and，86f
dopamine D2 receptors, (Contd.)
rapid dissociation of 122f

tuberoinfundibular dopamine pathway and, 88f

blockade in nucleus accumbens, 107
continuous occupancy, 169
conventional antipsychotic binding to, 119
dilemma of blocking in all dopamine pathways, 90
output, 129f

presynaptic, 21, 23f, 24f
rapid dissociation from, 119, 121
side effects of unwanted blockade, 1236

somatodendritic, 25f

dopamine D3 antagonists, 202
“dopamine hypothesis of schizophrenia”, 27
dopamine neurons, 105
dopamine partial agonists (DPAs), 125, 127f, 180f

for aggression management, 181f
for cognitive function improvement, 182f
in development, 134f
development of new, 202
for first-line treatment of schizophrenia positive symptoms, 179
integrated theory of schizophrenia and, 132f
on market, 134f
in mesolimbic pathway, 130f
for negative symptoms in schizophrenia, 182f
and nigrostriatal pathway, 131f
spectrum, 135f
switching from SDA to, 190f
dopamine receptors, 21, 22f
dopamine transporter (DAT), 20, 21f, 22f
and dorsolateral prefrontal cortex, 19f
dopaminergic neurons, 20–22
cognition regulation by, 27
cognitive symptoms and, 18f
dopamine deficit in mesocortical projections to, 28
genes influencing, 19f
information processing involving, 73
mesocortical dopamine pathway, 29f
mesolimbic dopamine pathways in schizophrenia, 85f
regulation by dopamine and serotonin, 19f
and schizophrenia symptoms, 15, 76f
from histamine-1 receptor blockade, 95
drug abuse, 179
by schizophrenic patients, 90
symptoms shared with schizophrenia, 13

drug-induced Parkinsonism, 86
drug-induced psychoes, symptoms shared with schizophrenia, 12

drug interactions, 162
dry mouth
from conventional antipsychotics, 92f
dysbindin, 59
genes coding for, 63f
and glutamate synapses strengthening, 62, 66f
and NMDA receptor regulation, 68f
and NMDA regulation, 71
and synapse formation, 62, 65f
vGluT regulated by, 71
dysconnectivity, 59
dyskinesias, dopamine hyperactivity in nigrostriatal pathway and, 31, 32f
dyslipidemia, 139
aripiprazole and, 176
atypical antipsychotic agents and, 137
blood pressure monitoring, 146
ziprasidone and, 171
zotepine and, 172
dystonia, nigrostriatal pathway dopamine deficiencies and, 31
dystrobrevin-binding protein 1, 58
efficacy, path to, 155f
efficacy profile, 154f
elderly
risperidone for, 166
EMD128130 (sarizotan), 134f, 202
emotion
amygdala response to input, 78
brain component regulating, 16
mesocortical prefrontal cortex and, 17f
mesolimbic dopamine pathway role in, 28
brain areas impacting, 75
eplivanserin (SR 46349), 201
ERB signaling system, neuregulin activation of, 71
essential amino acids, 39
Essential Psychopharmacology: The Prescriber’s Guide (Stahl), 162, 163
excitatory amino acid transporters (EAAT), 33, 40f
for glutamate uptake, 35f
“excitotoxic hypothesis of schizophrenia”, 54
excitotoxicity, 57f

cellular events during, 58f–61f
in early fetal brain development, 62f
and glutamate systems, 55, 194
and neuronal insult, 57
executive dysfunction, 11
impaired
in schizophrenia, 11
by mesocortical dopamine pathway, 27
extrapyramidal symptoms (EPS), 121, 123f
5HT2A antagonist to reduce, 105, 107
D2 receptor blockade and, 86
conversion to glutamine, 34, 35f
system overactivity, 28, 55
key pathways in brain, 43f, 41–45
NMDA hypothesis of schizophrenia and, 42–45
NMDA receptor hypofunction hypothesis of schizophrenia and, 42–45
5HT2A receptors and, 10, 39f
5HT2A receptors effect on glutamate release and, 115f
antipsychotic action to reduce, 179
mesolimbic dopamine pathway role in, 26

fear. See also anxiety disorders
processing by amygdala, 77f
eicitotoxicity in early development, 62f
insult and schizophrenia, 57
survival of wrong neurons, 59
insults in neurodegenerative theories of schizophrenia, 54f
first-generation antipsychotic agents, 83f, 96
fluoxetine (Prozac), metabolite of, 159
olanzapine and, 165
flupenthixol (Depixol), 85t
fluphenazine (Prolixin), 85t
fluvoxamine, 159, 200
free radicals, 60f
and neuron death, 56
scavengers for excitotoxicity, 196f
G protein-linked receptors, 103f
GABA (gamma-aminobutyric acid), 44f, 72f
GABA (gamma-aminobutyric acid) neurons, 46, 47f
for connecting serotonin and dopamine neurons, 105
Glutamate agonists, 195
Glutamate transporters (GlT1), 196
inhibitors, 198f
gondose expansiveness, 3
guilt, 14
CYP450 enzymes in wall, 156
GW742457, 201
H1 histamine receptor, and weight gain, 137
hallucinations, 2, 5
5HT2A receptors and, 103f
5HT2A receptors effect on glutamate release and, 113
antipsychotic action to reduce, 179
mesolimbic dopamine pathway role in, 26

Index
hallucinations (Contd.)
 reduction with mesolimbic D2 receptor block, 90
 serotonin receptors and, 99
 voices in, 2
haloperidol (Haldol), 85t, 91f, 95

histamine,
 in arousal pathways, 150, 152f
 antagonism, 94f
 atypical antipsychotic agents and, 139f
 blockade of, 95
 and sedation, 151f
histamine-1, with serotonin-2C antagonist, and appetite stimulation, 141f

"hit and run" binding, 121

hostile belligerence, 3

hydroxy-pyruvate (OH-pyruvate), 38f, 39, 69f

5-hydroxytryptophan (5HTP), 97, 98f
 of mesolimbic dopamine pathway, 27
hyperglycemic hyperosmolar syndrome (HHS), 143, 147f, 149f
 clozapine and, 164
 olanzapine and, 165
 risperidone and, 167
hyperinsulinemia, 137
 hyperprolactinemia, 90
 5HT2A antagonists and reduction of, 116
 from unwanted D2 receptor blockade, 136
hypothalamic nuclei,
 dopamine pathway from, 26f, 33

iloperidone, 122f, 200

impulsivity, 13

NMDA receptor hypofunction affect, 46
 schizophrenia and, 11, 73, 74f
insomnia,
 quetiapine for treating, 169

insulin, blocking M3-cholinergic receptors to reduce, 146f

insulin resistance, 139
 atypical antipsychotic agents and, 144f, 149f
 psychopharmacologist options for, 151f
 quetiapine and, 169
 risperidone and, 167
 ziprasidone and, 171
 zotepine and, 172

integrated dopamine hypothesis of schizophrenia, 33, 35f

interpersonal functioning, impaired, in schizophrenia, 78

inverse agonists,
 vs. antagonists, 105

ion channel-linked receptors, 40
ionotropic receptors, 40
irritability, 14

judgment, distortions in schizophrenia, 78

kainite receptors, 40, 40f
 and schizophrenia symptoms, 43, 194
ketoconazole, 159

lactation, 32
 for schizophrenia, 190
 adding to antipsychotic, 191f
language, odd use of, 11

lazaroids, as free radical scavenger, 196f

life expectancy, of schizophrenic patients, 4

low-potency antipsychotic agents, and dissociation, 124

loxapine (Loxitane), 85t, 96

5HT6-antagonist properties of, 201

pharmacological icon, 174f

lubaxpine, 173

LY 293558, 200

“master switch”, 41
Mellaril (thioridazine), 85t
MEM3454, 203
memantine, 194

memory,
 long-term formation, BDNF and, 99

mental retardation, 180

mesocortical dopamine neurons, 45

mesocortical dopamine pathway, 26f, 27, 29f
 and D2 antagonists, 85f
 dopamine output and, 120f, 132f
 and serotonin-dopamine antagonism, 113f
 to ventromedial prefrontal cortex, 30f

mesocortical prefrontal cortex
 and emotion and cognitive symptoms, 17f
 and schizophrenia symptoms, 15

mesolimbic circuits
 malfunctioning, and positive symptoms of schizophrenia, 15, 16
 and positive symptoms of schizophrenia, 17f
mesolimbic dopamine hypothesis, 28f
mesolimbic dopamine pathway, 26, 26f, 27f, 29, 44f
blockade of D2 receptor antagonists, 84, 84f, 91
blockade of D2 receptors, 83
dopamine output and, 120f, 132f
hyperactivity of, 35f
and thalamus, 51f
mesolimbic pathway, dopamine partial agonist in, 130f
mesoridazine (Serentil), 85t
metabolic highwa, 142f
monitoring on, 149f, 150f
metabolic pharmac, 183, 185f
metabotropic glutamate receptors (mGluRs), 39, 42f, 197
mGluRs (metabotropic glutamate receptors), 39, 42f, 197
mirtazapine, 200
mitochondria, 61f
modafinil, 202
molindone (Moban), 85t
monoamine oxidase (MAO), and dopamine breakdown, 21, 21f
5HT2C receptors and, 103f
serotonin receptors and, 99
mood stabilizers, 160, 180. See also lithium for aggression management, 181f for schizophrenia, 190
adding to antipsychotic, 191f
mesolimbic dopamine pathway role in, 26
reduction in, 5, 30
motor activity
as antipsychotic side effect, 95
disturbances, 2
dopamine and prevention of side effects, 124
glimmeral dopamine pathway to control, 31
muscarinic-1 agonists, 203
muscarinic-1 receptors
atypical antipsychotic agents and, 139f
and sedation, 151f
muscarinic 3 (M3) antagonism, and antipsychotic agents, 147f
muscarinic cholinergic receptors, antagonism of, 144
blockade from conventional antipsychotics, 92f, 91–95
blocking to reduce insulin release, 146f
antipsychotic agents and, 171
myocarditis, clozapine and, 164
n-back test, 74f
in schizophrenia, 75f
N-methyl-d-aspartate (NMDA) glutamate system, development abnormalities, 28
N-methyl-glycine, 196
N-methyl loxapine, 173
Navane (thiothixene), 85t
nefazodone, 159
Negative Symptom Assessment, 7f
negative symptom pharmac, 181, 182f
nemonapride, 122f
neuregulin, 59, 64f
genes coding for, 63f
and glutamate synapses strengthening, 66f
and NMDA receptor regulation, 68f
and NMDA regulation, 71
and synapse formation, 62, 65f
neurokinin antagonists, 203
neurolepsis, 30, 82, 83, 150
neuroleptic-induced deficit syndrome, 84
neuroleptic-induced tardive dyskinesia, 31
neuroleptic malignant syndrome, 96
neuroleptics, 83
neurons, cell death,
excitotoxic mechanism and, 58f
glutamate activity and, 55
preventing in schizophrenia, 194
dopaminergic, 20–22
sensitivity to calcium, 59f
neuropsychological assessment batteries, 11
neurotransmitters, of cortical arousal, 152f
and glutamate, 33
5HT6 receptors and, 103f
nicotinic partial agonists (NPA), 203
nigrostriatal dopamine pathway, 26f, 31, 32f
antipsychotic agent binding to postsynaptic D2 receptors, 112f
dopamine output and, 120f, 132f
dopamine partial agonists (DPAs), 131f
serotonin-dopamine interaction, 107f
serotonin regulation of dopamine release, 108f
NMDA (N-methyl-d-aspartate) antagonists, 194, 195f
NMDA (N-methyl-d-aspartate) receptors, 40, 40f, 41, 44f
enhancement of activity, 198f
excitation spectrum by glutamate, 57f
genes affecting, 58
and glutamate systems, 37, 38f
NMDA (N-methyl-d-aspartate) receptors
(contd.)
hyposynthesis, 200
hyposynthesis hypothesis of schizophrenia, 44f, 45f, 69f, 70f, 72f
and corticobrainstem glutamate pathways, 42–45
hyposynthesis in glutamatergic corticostriatal
and corticoaccumbens projections, 51f
long-term potentiation (LTP) triggered by,
66f
normal excitatory neurotransmission of, 56f
production,
37
regulation of corticocortical glutamate
pathways, 53f
requirements for active, 197, 197f
susceptibility gene regulation of, 71
synapses with, 67f
and synaptogenesis, 62
norepinephrine (NE). See also serotonin
norepinephrine reuptake inhibitors
(SNRIs)
in arousal pathways, 150, 152f
5HT2C receptors and, 103f
norepinephrine reuptake inhibition (NRI), 174f
norepinephrine selective reuptake inhibitors
(NRIs), 202
norepinephrine transporter (NET),
inhibition,
by norquetiapine, 169
norfluroxetine, 159
norquetiapine, 168, 168f
NRA0562, 122f
nucleus accumbens,
D2 receptor blockade in, 107
as pleasure center, 83
and schizophrenia symptoms, 16, 75, 76f
“number needed to harm”, 87, 171
obesity,
5HT2C receptors and, 103f
atypical antipsychotic agents and, 137
blood pressure monitoring, 146
peptide treatments for, 204
serotonin receptors and, 99
observation, for negative symptom
identification in schizophrenia, 6, 8f
olanzapine, 157, 157f, 164, 184
5HT6-antagonist properties of, 201
and antagonism of muscarinic cholinergic
receptor, 146f
and cardiometabolic risk, 140f
as CYP 2D6 substrate, 158, 159f
and diabetes, 171
M3 receptors blocked by, 146f
pharmacological icon, 165f
potency, and dissociation, 125
raising levels of, 160f
for sedation, 185
and weight gain risk, 140t
OPC 4293, 129
oppositional defiant disorder, 179
and schizophrenia symptoms, 15
Org 24292, 200
Org 25271, 200
Org 25501, 200
Org 25573, 200
osanetant (SR142801), 204
paliperidone, 158, 159f, 160f, 167, 183
pharmacological icon, 167f
and sedation, 186f
sedation risk with, 184
parabrachial nucleus (PBN)
dopamine pathway from, 26f, 33
paranoia, 78
paranoid projection, 3
paranoid psychosis, 3
drug-induced, 86
dopamine agonists for treatment, 21
nigrostriatal pathway dopamine deficiencies
and, 31, 32f
quetiapine for, 169
vs. antagonists, 132f
perceptual distortions, 2
periaqueductal gray matter,
dopamine pathway from, 26f, 33
perospirone, 173
pharmacological icon, 173f
perphenazine (Trilafon), 85t
pharmacodynamics, 156
pharmacokinetics, 156
phencyclidine (PCP),
and schizophrenia symptoms, 43, 44, 194
Pick’s disease, cognitive symptoms, 13
pimozide (Orap), 85t
pipotiazine (Piportil), 85t
pituitary
regulation of prolactin secretion, 116
SPA action in, 131
pleasure
mesolimbic dopamine pathway role in, 26, 30
reduce ability to experience, 5
pleasure center
nucleus accumbens as, 83
PNU 9639/OSU 6162, 134f
polypharmacy, 190, 192f
Positive and Negative Syndrome Scale, 7t
poststroke dementia, cognitive symptoms, 13
pramlintide, 204
prefrontal cortex, 5HT2A receptor activation, in schizophrenia, 114
fetal development, and schizophrenia, 57 and schizophrenia symptoms, 15, 75
SPA action in, 113
presynaptic 5HT1A receptors, 102f
presynaptic 5HT1B/D receptors, 101f
presynaptic antagonists, 199f
presynaptic D2 receptors, 22, 23f, 24f
procognitive agents, D1-selective agonists as, 202
prodrome
negative symptoms, 6, 10f
amisulpride and, 177
atypical antipsychotic agents and, 118f
clozapine and, 163
conventional antipsychotic agents and,
118f
elevation, 90
inhibiting release, 32
inhibition by dopamine, 117f
olanzapine and, 165
quetiapine and, 169
rise in levels, 88f
risperidone and, 167
secretion regulation, 116
serotonin stimulation of, 117f
serotonin and, 172
Prolixin (fluphenazine), 85t
protease inhibitors, 159
glutamate for biosynthesis, 33
psychosis, 1
acute, ziprasidone for, 170
antipsychotic action to reduce symptoms, 179
as associated feature in disorders, 3t
disorders requiring presence as defining feature, 2, 2t
mesolimbic dopamine pathway role in, 26
positive symptoms, 5t
quetiapine for, 169
rebound, from discontinued clozapine, 185
psychotic depression, symptoms shared with schizophrenia, 12, 13f
psychotic episode, 4
psychotic illness
combination chemotherapies for, 204
misconceptions, 1
pyramidal cells, malfunctioning glutamate input into, 52
output and input, 49
QTc prolongation, ziprasidone and, 171
questioning, for negative symptom identification in schizophrenia, 8f
quetiapine, 136f, 158, 168, 183
5HT6-antagonist properties of, 201
binding properties, 168f
and cardiometabolic risk, 140t
and diabetes, 171
dosage with carbamazepine, 161f, 162
pharmacological icon, 168f
potency, and dissociation, 124
for sedation, 185
switching to nonsedating agent, 189
and weight gain risk, 140t
rapid dissociation, 119, 121, 122f, 124f
rapid “off” time, 119
reasoning. See also cognitive functioning distortions in schizophrenia, 78
rebound psychosis, from discontinued clozapine, 185
relapse,
after antipsychotic treatment, vs. side effects, 95
remission
by schizophrenic patient, 54
resentment, 3
retardation, 3
reward
blocking mechanisms, 84
in mesolimbic dopamine system, 90
mesolimbic dopamine pathway role in, 26, 30
RGS4 (regulator of G-protein signaling), 71
genes for, 72f
sarcosine, 196
sarizotan (EMD128130), 134f, 202
Schedule for Assessment of Negative Symptoms, 7t
scar}
faces, schizophrenic patient response to, 77f, 78
Schedule for the Deficit Syndrome, 7t
schizoaffective disorder, symptoms shared with schizophrenia, 12, 13f
schizophrenia 5HT2A receptors activation in prefrontal cortex, 114 acquired vs. inherited, 56 atypical antipsychotics to improve symptoms, 109 best long-term outcomes, 154f, 155f bifeprunox for treating, 178 cognitive symptoms, 13, 13t combination chemotherapies for, 204 diagnosis, value of deconstructing, 18 excitotoxicity and, 56, 57f fetal brain insult and, 57 free radical scavengers, 196f genetic basis, 58 glutametergic treatments for, 196f ideal treatment of, 112 integrated dopamine hypothesis, 33, 35f, 88f and dopamine partial agonists, 132f and hit-and-run actions, 127f and serotonin-dopamine antagonists, 121f mesocortical dopamine hypothesis of negative, cognitive, and affective symptoms of, 31f as more than psychosis, 3–7 negative symptoms, 5, 5t, 6t causes, 14f observation to identify, 6, 8f primary and secondary, 7t in prodromal phase, 6, 10f questioning to identify, 8f reasons to measure, 7t scales for assessing, 7t shared with other disorders, 12 neurodegenerative hypothesis, 54f, 52–56 neurodevelopmental hypothesis, 62f, 64f–67f neuroimaging circuits in, 73 neutral stimuli and, 78f NMDA receptor hypofunction hypothesis of, 44f, 45f, 42–45, 52, 69f, 70f, 72f patient responsiveness to antipsychotic treatment, 54 positive and negative symptoms, 4f positive symptom pharmacy, 179, 180f positive symptoms, 4, 5t link to mesolimbic/nucleus accumbens area, 16 shared with other disorders, 13f presymptomatic and prodromal treatment, 192, 193f progressive nature of, 52 rapid clinical assessment, 9t risperidone effectiveness for, 167 stages, 55f substance abuse incidence in, 30 susceptibility genes for, 63t symptoms, 11f, 2–18, 75 overlap, 12f shared with other illnesses, 12–18 treatment, vs. disease treatment, 179 ziprasidone for, 170 schizophrenic patients life expectancy of, 4 siblings of, 74 n-back test in, 76f smoking and drug abuse by, 90, 203 suicide in, 4 sedation, antipsychotic agents and, 150–154 avoiding, 152–153, 155f long-term avoidance, 153f quetiapine and, 169 receptors mediating, 151f as short-term therapeutic tool, 152f vs. somnolence, 154f zotepine and, 172 sedation pharmacy, 184, 186f seizures clozapine or zotepine and increased risk, 158, 164 zotepine and, 172 self-mutilation, 179 Serentil (mesoridazine), 85t serial learning, impaired, in schizophrenia, 11 d-serine, 195, 197, 197f production, 37, 38f, 39 d-serine racemase, 39 l-serine, glycine synthesis from, 39 serotonin-2C antagonist, histamine-1 with, and appetite stimulation, 141f serotonin (5HT), 72f 1A agonists or antagonists, 201 effect on glutamate release, 115f 5HT1D antagonist action by ziprasidone, 172 5HT2A antagonist binding to 5HT2A receptor, and dopamine release, 112 and D2 antagonists, 119 hyperprolactinemia reduction, 116 reduction of positive symptoms, 116f effect on glutamate release, 115f and positive symptoms improvement, 113–116 5HT2A-selective antagonists/inverse agonists, 200 agonists or antagonists, 201 functions, 103f
olanzapine and, 165
and weight gain, 137
5HT6 antagonists, physiological role, 201
5HT7 antagonists, 201
5HT21 receptors, agonism of, 135f
dorsolateral prefrontal cortex regulation by, 19f
interaction with dopamine, in nigrostriatal dopamine pathway, 107f, 111f
production, 98f
prolactin stimulation of, 117f
regulation of dopamine release, 108f–110f
termination of action, 99f
serotonin agonists, and 5HT2A antagonists, 132
serotonin-dopamine antagonists (SDA), 96, 97f, 121f, 180f
for aggression management, 181f
for cognitive function improvement, 182f
in development, 122f
for first-line treatment of schizophrenia positive symptoms, 179
integrated theory of schizophrenia and, 121f
for negative symptoms in schizophrenia, 182f
new options, 200
switching to DPA, 190f
serotonin partial agonists (SPAs), 96, 136f
atypical antipsychotic agents and, 131
serotonin receptors, 97, 100f, 105
5HT1A and 5HT2A, 99
5HT1A autoreceptors, 102f
5HT1A receptors, 105f
5HT1B/D autoreceptors, 101f
5HT2A antagonist reduction of EPS, 105–107
5HT2A receptors, 105, 105f, 106f
antagonist reduction of negative symptoms, 108–112
5HT3 receptors, 103f
5HT6 receptors, 103f
5HT7 receptors, 103f
postsynaptic, 97, 105
impact of, 98
possible functions, 103f
presynaptic, 97–105
serotonin selective reuptake inhibitors (SSRIs), 110
fluvoxamine, 159, 200
serotonin transporter (SERT), 97
gene for, 73f
sertindole, 158, 173
5HT6-antagonist properties of, 201
dosage with carbamazepine, 161f, 162
pharmacological icon, 174f
and QTc prolongation, 171
siblings of schizophrenic patients, 74
n-back test in, 76f
sigma-1 agonists/antagonists, 200
“sigma enigma”, 200
skeletal muscle, insulin resistance in, 141, 144f
sleep
5HT2A receptors and, 103f
quetiapine for improving, 168f
serotonin receptors and, 99
SLV313, 129, 134f, 202
SLV314, 129, 134f, 202
SM13493/lurasidone, 122f
CYP450 1A2 and, 158f
somatodendritic autoreceptor, 98, 102f
somatodendritic dopamine D2 receptors, 25f
somnolence, vs. sedation, 154f
spinophyllin, genes for, 73f
SR 147778, 203
SR 241586, 204
SR141716 A, 203
SR31742A, 200
SSR 146977, 204
SSR125047, 200
SSR180711, 203
SSR181507, 134f, 202
SSR59181, 200
Stelazine (trifluoperazine), 83t
striatum,
SPA action in, 131
stroke, 180
excitotoxicity and, 56, 57f
substance abuse. See also specific substance types incidence in schizophrenia, 30
substance P antagonists, 203
substantia nigra, 31
in schizophrenic patients, 4
attempts, 179
clozapine to reduce, 164, 183, 184f
sulpiride (Dolmatil), 85t, 96, 129, 130, 134f, 135f, 177
clinical actions of, 125
pharmacological icon, 177f
superiority, attitude of, 3
susceptibility genes, 58
for schizophrenia, 63t, 73
switching antipsychotic agents, 185, 187f
process to avoid, 187f
symptom domains, localization of, 15
synapses,
 strength of, and survival or elimination, 67
 abnormal, 61
 genes causing, 65f, 66f
 from gene expression, 58

talnetant, 204

tandospirone, 201

tardive dyskinesia, 86, 87f, 95, 123f
clozapine and, 163
 neuroleptic-induced, 31
 reversal, 87
 from unwanted D2 receptor blockade, 1
 TC1827, 20
 tension, 14

tercian (cyamemazine), 85t, 96, 175
 pharmacological icon, 175f
 terminal autoreceptor, 98
thalamic dopamine pathway, 33
thalamocortical glutamate pathways, 43f, 46
 dopamine pathway to, 26f
 mesolimbic dopamine hyperactivity and, 50f
 sensory filter from GABA neurons, 46, 47f
 dopamine and, 48f
 sensory input inhibition from, 49f
thioridazine (Mellaril), 85t
thiothixene (Navane), 85t
Thorazine (chlorpromazine), 82, 85t
tics
dopamine hyperactivity in nigrostriatal pathway and, 31, 32f
TOH (tyrosine hydroxylase), 20, 20f
tremor
 as antipsychotic side effect, 95
 nigrostriatal pathway dopamine deficiencies and, 31
trifluoperazine (Stelazine), 85t
triglycerides, elevated, atypical antipsychotic agents and, 144f
tryptophan, 97, 98f
tryptophan hydroxylase (TRY-OH), 97, 98f
tuberoinfundibular dopamine pathway, 26f, 32, 32f
 and D2 antagonists, 88f
dopamine output and, 120f, 132f
 hypoactivity of, 35f
tyrosine, 20, 20f
tyrosine hydroxylase (TOH), 20, 20f
 genes for, 73f

vabicaserin, 201
varenicline, 203
dopamine pathway from, 26f, 33
ventromedial prefrontal cortex (VMPFC),
dopamine deficit in mesocortical projections to, 28
mesocortical dopamine pathway to, 30f
 and schizophrenia symptoms, 15, 76f
 verbal abuse, 179
 verbal fluency, impaired, in schizophrenia, 11
vesicular glutamate transporters (vGluT), 36f, 39, 40f
dysbindin regulation of, 71
vesicular monoamine transporters (VMATs), and dopamine, 22f
violence, 10
Vitamin E
 as free radical scavenger, 196f
vomiting
 5HT3 receptors and, 103f
 bifeprunox and, 178
 serotonin receptors and, 99

waist circumference, monitoring, 146
weight
 baseline measurement, 149f
 antipsychotic agents and, 143f
 aripiprazole and, 176
 atypical antipsychotic agents and, 137, 140t
 clozapine and, 164
 from histamine-1 receptor blockade, 95
 low risk antipsychotic agents, 140t
 monitoring, 150f
 olanzapine and, 165
 quetiapine and, 169
 risperidone and, 171
 zotepine and, 172
 worry, 14. See also anxiety
Y931, 122f
ziprasidone, 136f, 158, 170, 183
 with 5HT1D antagonist actions, 172
 and cardiometabolic risk, 140t
 dosage with carbamazepine, 161f, 162
 pharmacological icon, 170f
 and sedation, 184, 186f
 and weight gain risk, 140t
zotepine, 157, 157f, 158, 172
 5HT6-antagonist properties of, 201
 binding properties, 172f
 dosage with carbamazepine, 161f, 162
 pharmacological icon, 172f
 and QTc prolongation, 171
zuclopenthixol (Clopixol), 85t