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Interpolation

Often we want to fit a smooth curve through a set of data points. Applications
might be differentiation or integration or simply estimating the value of the
function between two adjacent data points. With interpolation we actually pass
a curve through the data. If data are from a crude experiment characterized by
some uncertainty, it is best to use the method of least squares, which does not
require the approximating function to pass through all the data points.

1.1 Lagrange Polynomial Interpolation

Suppose we have a set of n + 1 (not necessarily equally spaced) data (xi, yi).
We can construct a polynomial of degree n that passes through the data:

P(x) = a0 + a1x + a2x2 + · · · + anxn.

The n + 1 coefficients of P are determined by forcing P to pass through the
data. This leads to n + 1 equations in the n + 1 unknowns, a0, a1, . . . , an:

yi = P(xi ) = a0 + a1xi + a2x2
i + · · · + anxn

i i = 0, 1, 2, . . . , n.

This procedure for finding the coefficients of the polynomial is not very
attractive. It involves solving a system of algebraic equations that is generally ill-
conditioned (see Appendix) for large n. In practice we will define the polynomial
in an explicit way (as opposed to solving a system of equations). Consider the
following polynomial of degree n associated with each point xj:

L j (x) = α j (x − x0)(x − x1) · · · (x − x j−1)(x − x j+1) · · · (x − xn),

where αj is a constant to be determined. In the product notation, Lj is written
as follows

L j (x) = α j

n∏
i=0
i �= j

(x − xi ).
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2 INTERPOLATION

If x is equal to any of the data points except xj, then Lj(xi) = 0 for i �= j . For
x = xj,

L j (x j ) = α j

n∏
i=0
i �= j

(x j − xi ).

We now define α j to be

α j =

⎡
⎢⎢⎣ n∏

i=0
i �= j

(x j − xi )

⎤
⎥⎥⎦

−1

.

Then, L j will have the following important property:

L j (xi ) =
{

0 xi �= x j

1 xi = x j .
(1.1)

Next we form a linear combination of these polynomials with the data as weights:

P(x) =
n∑

j=0

y j L j (x). (1.2)

This is a polynomial of degree n because it is a linear combination of polynomi-
als of degree n. It is called a Lagrange polynomial. It is the desired interpolating
polynomial because by construction, it passes through all the data points. For
example, at x = xi

P(xi ) = y0L0(xi ) + y1L1(xi ) + · · · + yi Li (xi ) + · · · + yn Ln(xi ).

Since Li (xk) is equal to zero except for k = i, and Li (xi ) = 1,

P(xi ) = yi .

Note that polynomial interpolation is unique. That is, there is only one poly-
nomial of degree n that passes through a set of n + 1 points*. The Lagrange
polynomial is just a compact, numerically better behaved way of expressing the
polynomial whose coefficients could have also been obtained from solving a
system of algebraic equations.

For a large set of data points (say greater than 10), polynomial interpolation
for uniformly spaced data can be very dangerous. Although the polynomial is
fixed (tied down) at the data points, it can wander wildly between them, which
can lead to large errors for derivatives or interpolated values.

∗ The uniqueness argument goes like this: suppose there are two polynomials of degree n, Z1 and
Z2 that pass through the same data points, x0, x1, . . . , xn. Let Z = Z1 – Z2. Z is a polynomial of
degree n with n + 1 zeros, x0, x1, . . . , xn, which is impossible unless Z is identically zero.
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1.1 LAGRANGE POLYNOMIAL INTERPOLATION 3

EXAMPLE 1.1 Lagrange Interpolation

Consider the following data, which are obtained from a smooth function also
known as Runge’s function, y = (1 + 25x2)−1:

xi −1.00 −0.80 −0.60 −0.40 −0.20 0.00 0.20 0.40 0.60 0.80 1.00

yi 0.038 0.058 0.100 0.200 0.500 1.00 0.500 0.200 0.100 0.058 0.038

We wish to fit a smooth curve through the data using the Lagrange polyno-
mial interpolation, for which the value at any point x is simply

P (x) =
n∑

j=0

y j

n∏

i=0
i �= j

x − xi

x j − xi
.

For example at the point (x = 0.7), the interpolated value is

P (.7) = 0.038
(0.7 + 0.8)(0.7 + 0.6) · · · (0.7 − 0.8)(0.7 − 1.0)

(−1.0 + 0.8)(−1.0 + 0.6) · · · (−1.0 − 0.8)(−1.0 − 1.0)

+ 0.058
(0.7 + 1.0)(0.7 + 0.6) · · · (0.7 − 0.8)(0.7 − 1.0)

(−0.8 + 1.0)(−0.8 + 0.6) · · · (−0.8 − 0.8)(−0.8 − 1.0)
+ · · ·
+ 0.038

(0.7 + 1.0)(0.7 + 0.8) · · · (0.7 − 0.6)(0.7 − 0.8)
(1.0 + 1.0)(1.0 + 0.6) · · · (1.0 − 0.6)(1.0 − 0.8)

= −0.226.

Evaluating the interpolating polynomial at a large number of intermediate
points, we may plot the resulting polynomial curve passing through the data
points (see Figure 1.1). It is clear that the Lagrange polynomial behaves
very poorly between some of the data points, especially near the ends of the
interval. The problem does not go away by simply having more data points
in the interval and thereby tying down the function further. For example, if
instead of eleven points we had twenty-one uniformly spaced data points in
the same interval, the overshoots at the ends would have peaked at nearly
60 rather than at 1.9 as they did for eleven points. However, as shown in the
following example, the problem can be somewhat alleviated if the data points
are non-uniformly spaced with finer spacings near the ends of the interval.

x

f(
x)
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Lagrange Polynomial
Expected Behavior
Data Points

Figure 1.1 Lagrange polynomial interpolation of Runge’s function using eleven equally
spaced data points.
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4 INTERPOLATION

EXAMPLE 1.2 Lagrange Interpolation With Non-equally Spaced Data

Consider the following data which are again extracted from the Runge’s func-
tion of Example 1.1. The same number of points are used as in Example 1.1,
but the data points xi are now more finely spaced near the ends (at the
expense of coarser resolution near the center).

xi −1.00 −0.95 −0.81 −0.59 −0.31 0.00 0.31 0.59 0.81 0.95 1.00

yi 0.038 0.042 0.058 0.104 0.295 1.00 0.295 0.104 0.058 0.042 0.038

The interpolation polynomial and the expected curve, which in this case (as
in Example 1.1) is simply the Runge’s function, are plotted in Figure 1.2. It
is apparent that the magnitudes of the overshoots at the ends of the inter-
val have been reduced; however, the overall accuracy of the scheme is still
unacceptable.
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Figure 1.2 Lagrange polynomial interpolation of Runge’s function using eleven non-
equally spaced data points. The data toward the ends of the interval are more finely
spaced.

The wandering problem can also be severely curtailed by piecewise Lagrange
interpolation. Instead of fitting a single polynomial of degree n to all the data,
one fits lower order polynomials to sections of it. This is used in many practical
applications and is the basis for some numerical methods. The main problem
with piecewise Lagrange interpolation is that it has discontinuous slopes at
the boundaries of the segments, which causes difficulties when evaluating the
derivatives at the data points. Interpolation with cubic splines circumvents this
difficulty.

1.2 Cubic Spline Interpolation

Interpolation with cubic splines is essentially equivalent to passing a flexible
plastic ruler through the data points. You can actually hammer a few nails
partially into a board and pretend that they are a set of data points; the nails can
then hold a plastic ruler that is bent to touch all the nails. Between the nails, the
ruler acts as the interpolating function. From mechanics the equation governing
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1.2 CUBIC SPLINE INTERPOLATION 5
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Figure 1.3 A schematic showing the linearity of g′′ in between the data points. Also
note that with such a construction, g′′ is continuous at the data points.

the position of the curve y(x) traced by the ruler is

Cy(iv) = G,

where C depends on the material properties and G represents the applied force
necessary to pass the spline through the data. The force is applied only at the
data points; between the data points the force is zero. Therefore, the spline is
piecewise cubic between the data. As will be shown below, the spline interpolant
and its first two derivatives are continuous at the data points.

Let gi (x) be the cubic in the interval xi ≤ x ≤ xi+1 and let g(x) denote the
collection of all the cubics for the entire range of x. Since g is piecewise cubic
its second derivative, g′′, is piecewise linear. For the interval xi ≤ x ≤ xi+1, we
can write the equation for the corresponding straight line as

g′′
i (x) = g′′(xi )

x − xi+1

xi − xi+1
+ g′′(xi+1)

x − xi

xi+1 − xi
. (1.3)

Note that by construction, in (1.3) we have enforced the continuity of the second
derivative at the data points. That is, as shown in Figure 1.3, straight lines from
the adjoining intervals meet at the data points.

Integrating (1.3) twice we obtain

g′
i (x) = g′′(xi )

xi − xi+1

(x − xi+1)2

2
+ g′′(xi+1)

xi+1 − xi

(x − xi )2

2
+ C1 (1.4)

and

gi (x) = g′′(xi )

xi − xi+1

(x − xi+1)3

6
+ g′′(xi+1)

xi+1 − xi

(x − xi )3

6
+ C1x + C2. (1.5)

The undetermined constants C1 and C2 are obtained by matching the functional
values at the end points:

gi (xi ) = f (xi ) ≡ yi gi (xi+1) = f (xi+1) ≡ yi+1,

which give two equations for the two unknowns, C1 and C2. Substituting for C1
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6 INTERPOLATION

and C2 in (1.5) leads to the spline equation used for interpolation:

gi (x) = g′′(xi )

6

[
(xi+1 − x)3

�i
− �i (xi+1 − x)

]

+ g′′(xi+1)

6

[
(x − xi )3

�i
− �i (x − xi )

]

+ f (xi )
xi+1 − x

�i
+ f (xi+1)

x − xi

�i
, (1.6)

where xi ≤ x ≤ xi+1 and �i = xi+1 − xi . In (1.6) g′′(xi ) and g′′(xi+1) are still
unknowns. To obtain g′′(xi ), we use the remaining matching condition, which
is the continuity of the first derivatives:

g′
i (xi ) = g′

i−1(xi ).

The desired system of equations for g′′(xi ) is then obtained by differentiating
gi (x) and gi−1(x) from (1.6) and equating the two derivatives at x = xi . This
leads to

�i−1

6
g′′(xi−1) + �i−1 + �i

3
g′′(xi ) + �i

6
g′′(xi+1)

= f (xi+1) − f (xi )

�i
− f (xi ) − f (xi−1)

�i−1
i = 1, 2, 3, . . . , N − 1. (1.7)

These are N – 1 equations for the N + 1 unknowns g′′(x0), g′′(x1), . . . , g′′(xN ).
The equations are in tridiagonal form and diagonally dominant, and therefore
they can be solved very efficiently. The remaining equations are obtained from
the prescription of some “end conditions.” Typical conditions are:

a) Free run-out (natural spline):

g′′(x0) = g′′(xN ) = 0.

This is the most commonly used condition. It can be shown that with this
condition, the spline is the smoothest interpolant in the sense that the integral
of g′′2 over the whole interval is smaller than any other function interpolating
the data.

b) Parabolic run-out:

g′′(x0) = g′′(x1)

g′′(xN−1) = g′′(xN ).

In this case, the interpolating polynomials in the first and last intervals are
parabolas rather than cubics (see Exercise 3).

c) Combination of (a) and (b):

g′′(x0) = αg′′(x1)

g′′(xN−1) = βg′′(xN ),

where α and β are constants chosen by the user.
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1.2 CUBIC SPLINE INTERPOLATION 7

d) Periodic:

g′′(x0) = g′′(xN−1)

g′′(x1) = g′′(xN ).

This condition is suitable for interpolating in one period of a known periodic
signal.

The general procedure for spline interpolation is first to solve the system of
equations (1.7) with the appropriate end conditions for g′′(xi ). The result is then
used in (1.6), providing the interpolating function gi (x) for the interval xi ≤
x ≤ xi+1. In general, spline interpolation is preferred over Lagrange polynomial
interpolation; it is easy to implement and usually leads to smooth curves.

EXAMPLE 1.3 Cubic Spline Interpolation

We will now interpolate the data in Example 1.1 with a cubic spline. We
solve the tridiagonal system derived in (1.7). Since the data are uniformly
spaced, this equation takes a particularly simple form for g′′(xi):

1
6

g′′(xi−1) + 2
3

g′′(xi) + 1
6

g′′(xi+1) = yi+1 − 2yi + yi−1

�2
i = 1, 2, . . . , n − 1.

For this example, we will use the free run-out condition g′′(x0) = g′′(xn) = 0.

The cubic spline is evaluated at several x points using (1.6) and the g′′(xi)
values obtained from the solution of this tridiagonal system. The subroutine
spline in Numerical Recipes has been used in the calculation. The equiv-
alent function in MATLAB is also called spline. The result is presented in
Figure 1.4. Spline representation appears to be very smooth and is virtually
indistinguishable from Runge’s function.
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Figure 1.4 Cubic spline interpolation of Runge’s function using the equally spaced
data of Example 1.1.

Clearly spline interpolation is much more accurate than Lagrange inter-
polation. Of course, the computer program for spline is longer and a bit more
complicated than that for Lagrange interpolation. However, once such programs
are written for general use, then the time taken to develop the program, or the
“human cost,” no longer enters into consideration.
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8 INTERPOLATION

An interesting version of spline interpolation, called tension spline, can be
used if the spline fit wiggles too much. The idea is to apply some tension or pull
from both ends of the flexible ruler discussed at the beginning of this section.
Mathematically, this also leads to a tridiagonal system of equations for g′′

i , but
the coefficients are more complicated. In the limit of very large tension, all
the wiggles are removed, but the spline is reduced to a simple straight line
interpolation (see Exercise 6).

EXERCISES

1. Write a computer program for Lagrange interpolation (you may want to use
the Numerical Recipes subroutine polint or interp1 of MATLAB). Test
your program by verifying that P(0.7) = −0.226 in Example 1.1.

(a) Using the data of Example 1.1, find the interpolated value at x = 0.9.
(b) Use Runge’s function to generate a table of 21 equally spaced data points.

Interpolate these data using a Lagrange polynomial of order 20. Plot this
polynomial and comment on the comparison between your result and the
plot of Example 1.1.

2. Derive an expression for the derivative of a Lagrange polynomial of order n at
a point x between the data points.

3. Show that if parabolic run-out conditions are used for cubic spline interpolation,
then the interpolating polynomials in the first and last intervals are indeed
parabolas.

4. An operationally simpler spline is the so-called quadratic spline. Interpolation
is carried out by piecewise quadratics.

(a) What are the suitable joint conditions for quadratic spline?
(b) Show how the coefficients of the spline are obtained. What are suitable end

conditions?
(c) Compare the required computational efforts for quadratic and cubic

splines.

5. Consider a set of n + 1 data points (x0, f0), . . . , (xn, fn), equally spaced with
xi+1 − xi = h. Discuss how cubic splines can be used to obtain a numerical
approximation for the first derivative f ′ at these data points. Give a detailed
account of the required steps. You should obtain formulas for the numerical
derivative at the data points x0, . . . , xn and explain how to calculate the terms
in the formulas.

6. Tension splines can be used if the interpolating spline wiggles too much. In
this case, the equation governing the position of the plastic ruler in between
the data points is

y(iv) − σ 2 y′′ = 0

where σ is the tension parameter. If we denote gi (x) as the interpolating tension
spline in the interval xi ≤ x ≤ xi+1, then g′′

i (x) − σ 2gi (x) is a straight line in
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EXERCISES 9

this interval, which can be written in the following convenient forms:

g′′
i (x) − σ 2gi (x) = [g′′(xi ) − σ 2 f (xi )]

x − xi+1

xi − xi+1

+ [g′′(xi+1) − σ 2 f (xi+1)]
x − xi

xi+1 − xi
.

(a) Verify that for σ = 0, the cubic spline is recovered, and σ → ∞ leads to
linear interpolation.

(b) Derive the equation for tension spline interpolation, i.e., the expression
for gi (x).

7. The tuition for 12 units at St. Anford University has been increasing from
1998 to 2008 as shown in the table below:

Year Tuition per year
1998 $21,300
1999 $23,057
2000 $24,441
2001 $25,917
2002 $27,204
2003 $28,564
2004 $29,847
2005 $31,200
2006 $32,994
2007 $34,800
2008 $36,030

(a) Plot the given data points and intuitively interpolate (draw) a smooth curve
through them.

(b) Interpolate the data with the Lagrange polynomial. Plot the polynomial and
the data points. Use the polynomial to predict the tuition in 2010. This is
an extrapolation problem; discuss the utility of Lagrange polynomials for
extrapolation.

(c) Repeat (b) with a cubic spline interpolation and compare your results.

8. The concentration of a certain toxin in a system of lakes downwind of an
industrial area has been monitored very accurately at intervals from 1993 to
2007 as shown in the table below. It is believed that the concentration has
varied smoothly between these data points.

Year Toxin Concentration
1993 12.0
1995 12.7
1997 13.0
1999 15.2
2001 18.2
2003 19.8
2005 24.1
2007 28.1
2009 ???
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10 INTERPOLATION

(a) Interpolate the data with the Lagrange polynomial. Plot the polynomial and
the data points. Use the polynomial to predict the condition of the lakes in
2009. Discuss this prediction.

(b) Interpolation may also be used to fill “holes” in the data. Say the data from
1997 and 1999 disappeared. Predict these values using the Lagrange poly-
nomial fitted through the other known data points.

(c) Repeat (b) with a cubic spline interpolation. Compare and discuss your
results.

9. Consider a piecewise Lagrange polynomial that interpolates between three
points at a time. Let a typical set of consecutive three points be xi−1, xi , and
xi+1. Derive differentiation formulas for the first and second derivatives at
xi. Simplify these expressions for uniformly spaced data with � = xi+1 − xi .
You have just derived finite difference formulas for discrete data, which are
discussed in the next chapter.

10. Consider a function f defined on a set of N + 1 discrete points

x0 < x1 < · · · < xN .

We want to derive an (N + 1) × (N + 1) matrix, D (with elements dij), which
when multiplied by the vector of the values of f on the grid results in the deriva-
tive of f ′ at the grid points. Consider the Lagrange polynomial interpolation
of f in (1.2):

P(x) =
N∑

j=0

y j L j (x).

We can differentiate this expression to obtain P ′. We seek a matrix D such that

Df = P ′
N

where, P ′
N is a vector whose elements are the derivative of P(x) at the data

points. Note that the derivative approximation given by Df is exact for all
polynomials of degree N or less. We define D such that it gives the exact
derivatives for all such polynomials at the N + 1 grid points. That is, we want

D Lk(x j )︸ ︷︷ ︸
δk j

= L ′
k(x j ) j, k = 0, 1, 2, . . . , N

where δk j is Kronecker delta which is equal to one for k = j and zero for k �= j .
Show that this implies that

d jk = d

dx
Lk

∣∣∣∣
x=x j

, (1)

where d jk are the elements of D. Evaluate the right-hand side of (1) and show
that

d jk = L ′
k(x j ) = αk

N∏
l=0

l �= j,k

(x j − xl) = αk

α j (x j − xk)
for j �= k, (2)
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