The Econometric Modelling of Financial Time Series

Terence Mills’ best-selling graduate textbook provides detailed coverage of the latest research techniques and findings relating to the empirical analysis of financial markets. In its previous editions it has become required reading for many graduate courses on the econometrics of financial modelling.

This third edition, co-authored with Raphael Markellos, contains a wealth of new material reflecting the developments of the last decade. Particular attention is paid to the wide range of non-linear models that are used to analyse financial data observed at high frequencies and to the long memory characteristics found in financial time series. The central material on unit root processes and the modelling of trends and structural breaks has been substantially expanded into a chapter of its own. There is also an extended discussion of the treatment of volatility, accompanied by a new chapter on non-linearity and its testing.

Terence C. Mills is Professor of Applied Statistics and Econometrics at Loughborough University. He is the co-editor of the Palgrave Handbook of Econometrics and has over 170 publications.

Raphael N. Markellos is Senior Lecturer in Quantitative Finance at Athens University of Economics and Business, and Visiting Research Fellow at the Centre for International Financial and Economic Research (CIFER), Loughborough University.
The Econometric Modelling of Financial Time Series

Third edition

Terence C. Mills
Professor of Applied Statistics and Econometrics
Department of Economics
Loughborough University

Raphael N. Markellos
Senior Lecturer in Quantitative Finance
Department of Management Science and Technology
Athens University of Economics and Business
Contents

List of figures viii
List of tables xi
Preface to the third edition xiii

1 Introduction 1

2 Univariate linear stochastic models: basic concepts 9
 2.1 Stochastic processes, ergodicity and stationarity 9
 2.2 Stochastic difference equations 12
 2.3 ARMA processes 14
 2.4 Linear stochastic processes 28
 2.5 ARMA model building 28
 2.6 Non-stationary processes and ARIMA models 37
 2.7 ARIMA modelling 48
 2.8 Seasonal ARIMA modelling 53
 2.9 Forecasting using ARIMA models 57

3 Univariate linear stochastic models: testing for unit roots and alternative trend specifications 65
 3.1 Determining the order of integration of a time series 67
 3.2 Testing for a unit root 69
 3.3 Trend stationarity versus difference stationarity 85
 3.4 Other approaches to testing for unit roots 89
 3.5 Testing for more than one unit root 96
 3.6 Segmented trends, structural breaks and smooth transitions 98
 3.7 Stochastic unit root processes 105

4 Univariate linear stochastic models: further topics 111
 4.1 Decomposing time series: unobserved component models and signal extraction 111
Contents

4.2 Measures of persistence and trend reversion 124
4.3 Fractional integration and long memory processes 134

5 **Univariate non-linear stochastic models: martingales, random walks and modelling volatility** 151
5.1 Martingales, random walks and non-linearity 151
5.2 Testing the random walk hypothesis 153
5.3 Measures of volatility 157
5.4 Stochastic volatility 166
5.5 ARCH processes 174
5.6 Some models related to ARCH 199
5.7 The forecasting performance of alternative volatility models 204

6 **Univariate non-linear stochastic models: further models and testing procedures** 206
6.1 Bilinear and related models 207
6.2 Regime-switching models: Markov chains and smooth transition autoregressions 216
6.3 Non-parametric and neural network models 223
6.4 Non-linear dynamics and chaos 232
6.5 Testing for non-linearity 235

7 **Modelling return distributions** 247
7.1 Descriptive analysis of returns series 248
7.2 Two models for returns distributions 249
7.3 Determining the tail shape of a returns distribution 254
7.4 Empirical evidence on tail indices 257
7.5 Testing for covariance stationarity 261
7.6 Modelling the central part of returns distributions 264
7.7 Data-analytic modelling of skewness and kurtosis 266
7.8 Distributional properties of absolute returns 268
7.9 Summary and further extensions 271

8 **Regression techniques for non-integrated financial time series** 274
8.1 Regression models 274
8.2 ARCH-in-mean regression models 287
8.3 Misspecification testing 293
8.4 Robust estimation 304
Contents

8.5 The multivariate linear regression model 307
8.6 Vector autoregressions 309
8.7 Variance decompositions, innovation accounting and structural VARs 316
8.8 Vector ARMA models 319
8.9 Multivariate GARCH models 323

9 Regression techniques for integrated financial time series 329
 9.1 Spurious regression 330
 9.2 Cointegrated processes 338
 9.3 Testing for cointegration in regression 346
 9.4 Estimating cointegrating regressions 352
 9.5 VARs with integrated variables 356
 9.6 Causality testing in VECMs 373
 9.7 Impulse response asymptotics in non-stationary VARs 375
 9.8 Testing for a single long-run relationship 377
 9.9 Common trends and cycles 383

10 Further topics in the analysis of integrated financial time series 388
 10.1 Present value models, excess volatility and cointegration 388
 10.2 Generalisations and extensions of cointegration and error correction models 401

Data appendix 411
References 412
Index 446
Figures

2.1 ACFs and simulations of AR(1) processes page 15
2.2 Simulations of MA(1) processes 18
2.3 ACFs of various AR(2) processes 20
2.4 Simulations of various AR(2) processes 22
2.5 Simulations of MA(2) processes 25
2.6 Real S&P returns (annual 1872–2006) 31
2.7 UK interest rate spread (monthly March 1952–December 2005) 32
2.8 Linear and quadratic trends 41
2.9 Explosive AR(1) model 42
2.10 Random walks 43
2.11 ‘Second difference’ model 46
2.12 ‘Second difference with drift’ model 47
2.13 Dollar/sterling exchange rate (daily January 1993–December 2005) 50
2.14 FTA All Share index (monthly 1965–2005) 51
2.15 Autocorrelation function of the absolute returns of the GIASE (intradaily, 1 June–10 September 1998) 54
2.16 Autocorrelation function of the seasonally differenced absolute returns of the GIASE (intradaily, 1 June–10 September 1998) 55
2.17 Nord Pool spot electricity prices and returns (daily averages, 22 March 2002–3 December 2004) 56
3.1 Simulated limiting distribution of $T(\phi_T - 1)$ 75
3.2 Simulated limiting distribution of τ 76
3.3 Simulated limiting distribution of τ^*_μ 77
3.4 FTA All Share index dividend yield (monthly 1965–2005) 84
3.5 Simulated limiting distribution of τ^*_T 86
3.6 UK interest rates (monthly 1952–2005) 97
3.7 Logarithms of the nominal S&P 500 index (1871–2006) with a smooth transition trend superimposed 103
3.8 Nikkei 225 index prices and seven-year Japanese government bond yields (end of year 1914–2003) 108
List of figures

3.9 Japanese equity premium (end of year 1914–2003) 109
4.1 Real UK Treasury bill rate decomposition (quarterly January 1952–September 2005) 123
4.2 Three-month US Treasury bills, secondary market rates (monthly April 1954–February 2005) 133
4.3 ACFs of ARFIMA(0, d, 0) processes with $d = 0.5$ and $d = 0.75$ 139
4.4 SACF of three-month US Treasury bills 149
4.5 Fractionally differenced ($d = 0.88$) three-month US Treasury bills (monthly April 1954–February 2005) 149
5.1 Annualised realised volatility estimator for the DJI 163
5.2 Annualised realised volatility estimator versus return for the DJI 163
5.3 Dollar/sterling exchange rate ‘volatility’ (daily January 1993–December 2005) 173
5.4 Conditional standard deviations of the dollar sterling exchange rate from the GARCH(1,1) model with GED errors 196
6.1 IBM common stock price (daily from 17 May 1961) 214
6.2 Dollar/sterling exchange rate (quarterly 1973–1996) and probability of being in state 0 221
6.3 Twenty-year gilt yield differences (monthly 1952–2005) 222
6.4 Kernel and nearest-neighbour estimates of a cubic deterministic trend process 227
6.5 VIX implied volatility index (daily January 1990–September 2005) 230
7.1 Distributional properties of two returns series 250
7.2 Tail shapes of return distributions 259
7.3 Cumulative sum of squares plots 263
7.4 ‘Upper–lower’ symmetry plots 267
8.1 Accumulated generalised impulse response functions 324
8.2 Estimated dynamic hedge ratio for FTSE futures contracts during 2003 328
9.1 Simulated frequency distribution of $\hat{\beta}_{1000}$ 335
9.2 Simulated frequency distribution of the t-ratio of $\hat{\beta}_{1000}$ 336
9.3 Simulated frequency distribution of the spurious regression R^2 336
9.4 Simulated frequency distribution of the spurious regression dw 337
9.5 Simulated frequency distribution of $\hat{\beta}_{1000}$ from the cointegrated model with endogenous regressor 341
9.6 Simulated frequency distribution of the t-ratio on $\hat{\beta}_{1000}$ from the cointegrated model with endogenous regressor 342
9.7 Simulated frequency distribution of the slope coefficient from the stationary model with endogeneity 342
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8</td>
<td>Simulated frequency distribution of the slope coefficient from the stationary model without endogeneity</td>
<td>343</td>
</tr>
<tr>
<td>9.9</td>
<td>Simulated frequency distribution of the t-ratio on β_{1000} from the cointegrated model with exogenous regressor</td>
<td>344</td>
</tr>
<tr>
<td>9.10</td>
<td>Simulated frequency distribution of β_{1000} from the cointegrated model with endogenous regressor and drift</td>
<td>345</td>
</tr>
<tr>
<td>9.11</td>
<td>Stock prices and the FTSE 100</td>
<td>351</td>
</tr>
<tr>
<td>9.12</td>
<td>LGEN relative to the FTSE 100</td>
<td>356</td>
</tr>
<tr>
<td>9.13</td>
<td>Estimated error corrections</td>
<td>370</td>
</tr>
<tr>
<td>9.14</td>
<td>Estimated impulse response functions</td>
<td>377</td>
</tr>
<tr>
<td>9.15</td>
<td>Impulse responses from the two market models</td>
<td>382</td>
</tr>
<tr>
<td>10.1</td>
<td>FTA All Share index: real prices and dividends (monthly 1965–2005)</td>
<td>396</td>
</tr>
<tr>
<td>10.2</td>
<td>UK interest rate spread (quarterly 1952–2005)</td>
<td>398</td>
</tr>
<tr>
<td>10.3</td>
<td>S&P dividend yield and scatterplot of prices and dividends (annual 1871–2002)</td>
<td>408</td>
</tr>
</tbody>
</table>
Tables

2.1 ACF of real S&P 500 returns and accompanying statistics page 30
2.2 SACF and SPACF of the UK spread .. 32
2.3 SACF and SPACF of FTA All Share nominal returns 34
2.4 Model selection criteria for nominal returns ... 36
2.5 SACF and SPACF of the first difference of the UK spread 49
2.6 SACF and SPACF of the first difference of the FTA All Share index 52
2.7 SACF and SPACF of Nord Pool spot electricity price returns 55

4.1 Variance ratio test statistics for UK stock prices 130
 (monthly 1965–2002)

4.2 Interest rate model parameter estimates ... 134

5.1 Empirical estimates of the leveraged ARSV(1) model for the DJI 174
5.2 GARCH(1,1) estimates for the dollar/sterling exchange rate 196
6.1 Linear and non-linear models for the VIX ... 231
6.2 BDS statistics for twenty-year gilts ... 243
6.3 Within-sample and forecasting performance of three models 244
 for Δ r20
6.4 BDS statistics for the VIX residuals .. 245
7.1 Descriptive statistics on returns distributions ... 249
7.2 Point estimates of tail indices ... 258
7.3 Tail index stability tests .. 260
7.4 Lower tail probabilities ... 260
7.5 Cumulative sum of squares tests of covariance stationarity 264
7.6 Estimates of characteristic exponents from the central part of 266
distributions
7.7 Properties of marginal return distributions .. 270
8.1 Estimates of the CAPM regression (7.13) ... 301
8.2 Estimates of the FTA All Share index regression (8.14) 303
8.3 Robust estimates of the CAPM regression .. 306
8.4 BIC values and LR statistics for determining the order of the 321
 VAR in example 8.8
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Summary statistics for the VAR(2) of example 8.8</td>
<td>321</td>
</tr>
<tr>
<td>8.6</td>
<td>Granger causality tests</td>
<td>322</td>
</tr>
<tr>
<td>8.7</td>
<td>Variance decompositions</td>
<td>323</td>
</tr>
<tr>
<td>9.1</td>
<td>Market model cointegration test statistics</td>
<td>350</td>
</tr>
<tr>
<td>9.2</td>
<td>Cointegrating rank test statistics</td>
<td>366</td>
</tr>
<tr>
<td>9.3</td>
<td>Unrestricted estimates of VECM(2, 1, 2) model</td>
<td>372</td>
</tr>
<tr>
<td>9.4</td>
<td>Granger causality tests using LA-VAR estimation</td>
<td>375</td>
</tr>
<tr>
<td>9.5</td>
<td>Common cycle tests</td>
<td>387</td>
</tr>
</tbody>
</table>
Preface to the third edition

In the nine years since the manuscript for the second edition of *The Econometric Modelling of Financial Time Series* was completed there have continued to be many advances in time series econometrics, some of which have been in direct response to features found in the data coming from financial markets, while others have found ready application in financial fields. Incorporating these developments was too much for a single author, particularly one whose interests have diverged from financial econometrics quite significantly in the intervening years! Raphael Markellos has thus become joint author, and his interests and expertise in finance now permeate throughout this new edition, which has had to be lengthened somewhat to accommodate many new developments in the area.

Chapters 1 and 2 remain essentially the same as in the second edition, although examples have been updated. The material on unit roots and associated techniques has continued to expand, so much so that it now has an entire chapter, 3, devoted to it. The remaining material on univariate linear stochastic models now comprises chapter 4, with much more on fractionally differenced processes being included in response to developments in recent years. Evidence of non-linearity in financial time series has continued to accumulate, and stochastic variance models and the many extensions of the ARCH process continue to be very popular, along with the related area of modelling volatility. This material now forms chapter 5, with further non-linear models and tests of non-linearity providing the material for chapter 6. Chapter 7 now contains the material on modelling return distributions and transformations of returns. Much of the material of chapters 8, 9 and 10 (previously chapters 6, 7 and 8) remains as before, but with expanded sections on, for example, non-linear generalisations of cointegration.