A report of Working Group I of the Intergovernmental Panel on Climate Change

Summary for Policymakers

Drafting Authors:

Draft Contributing Authors:

This Summary for Policymakers should be cited as:
Summary for Policymakers

Introduction

The Working Group I contribution to the IPCC Fourth Assessment Report describes progress in understanding of the human and natural drivers of climate change, observed climate change, climate processes and attribution, and estimates of projected future climate change. It builds upon past IPCC assessments and incorporates new findings from the past six years of research. Scientific progress since the Third Assessment Report (TAR) is based upon large amounts of new and more comprehensive data, more sophisticated analyses of data, improvements in understanding of processes and their simulation in models and more extensive exploration of uncertainty ranges.

The basis for substantive paragraphs in this Summary for Policymakers can be found in the chapter sections specified in curly brackets.

Human and Natural Drivers of Climate Change

Changes in the atmospheric abundance of greenhouse gases and aerosols, in solar radiation and in land surface properties alter the energy balance of the climate system. These changes are expressed in terms of radiative forcing, which is used to compare how a range of human and natural factors drive warming or cooling influences on global climate. Since the TAR, new observations and related modelling of greenhouse gases, solar activity, land surface properties and some aspects of aerosols have led to improvements in the quantitative estimates of radiative forcing.

Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years (see Figure SPM.1). The global increases in carbon dioxide concentration are due primarily to fossil fuel use and land use change, while those of methane and nitrous oxide are primarily due to agriculture.

The primary source of the increased atmospheric concentration of carbon dioxide since the pre-industrial period results from fossil fuel use, with land-use change providing another significant but smaller contribution. Annual fossil carbon dioxide emissions increased from an average of 6.4 [6.0 to 6.8] GtC [23.5 [22.0 to 25.0] GtCO₂] per year in the 1990s to 7.2 [6.9 to 7.5] GtC [26.4 [25.3 to 27.5] GtCO₂] per year in 2000–2005 (2004 and 2005 data are interim estimates). Carbon dioxide emissions associated with land-use change

1 Climate change in IPCC usage refers to any change in climate over time, whether due to natural variability or as a result of human activity. This usage differs from that in the United Nations Framework Convention on Climate Change, where climate change refers to a change of climate that is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable time periods.

2 Radiative forcing is a measure of the influence that a factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system and is an index of the importance of the factor as a potential climate change mechanism. Positive forcing tends to warm the surface while negative forcing tends to cool it. In this report, radiative forcing values are for 2005 relative to pre-industrial conditions defined at 1750 and are expressed in watts per square metre (W m⁻²). See Glossary and Section 2.2 for further details.

3 ppm (parts per million) or ppb (parts per billion, 1 billion = 1,000 million) is the ratio of the number of greenhouse gas molecules to the total number of molecules of dry air. For example, 350 ppm means 350 molecules of a greenhouse gas per million molecules of dry air.

4 Fossil carbon dioxide emissions include those from the production, distribution and consumption of fossil fuels and as a by-product from cement production. An emission of 1 GtC corresponds to 3.67 GtCO₂.

5 In general, uncertainty ranges for results given in this Summary for Policymakers are 90% uncertainty intervals unless stated otherwise. That is, there is an estimated 5% likelihood that the value could be above the range given in square brackets and 5% likelihood that the value could be below that range. Best estimates are given where available. Assessed uncertainty intervals are not always symmetric about the corresponding best estimate. Note that a number of uncertainty ranges in the Working Group I TAR corresponded to 2 standard deviations (95%), often using expert judgement.
Figure SPM.1. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores (symbols with different colours for different studies) and atmospheric samples (red lines). The corresponding radiative forcings are shown on the right hand axes of the large panels. (Figure 6.4)

The understanding of anthropogenic warming and cooling influences on climate has improved since the TAR, leading to very high confidence that the global average net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] W m⁻² (see Figure SPM.2). (2.3, 6.5, 2.9)

- The global atmospheric concentration of methane has increased from a pre-industrial value of about 715 ppb to 1732 ppb in the early 1990s, and was 1774 ppb in 2005. The atmospheric concentration of methane in 2005 exceeds by far the natural range of the last 650,000 years (320 to 790 ppb) as determined from ice cores. Growth rates have declined since the early 1990s, consistent with total emissions (sum of anthropogenic and natural sources) being nearly constant during this period. It is very likely that the observed increase in methane concentration is due to anthropogenic activities, predominantly agriculture and fossil fuel use, but relative contributions from different source types are not well determined. (2.3, 7.4)

- The global atmospheric nitrous oxide concentration increased from a pre-industrial value of about 270 ppb to 319 ppb in 2005. The growth rate has been approximately constant since 1980. More than a third of all nitrous oxide emissions are anthropogenic and are primarily due to agriculture. (2.3, 7.4)

The combined radiative forcing due to increases in carbon dioxide, methane, and nitrous oxide is +2.30 [+2.07 to +2.53] W m⁻², and its rate of increase during the industrial era is very likely to have been unprecedented in more than 10,000 years (see Figures

6 In this Summary for Policymakers, the following terms have been used to indicate the assessed likelihood, using expert judgement, of an outcome or a result: Virtually certain > 99% probability of occurrence, Extremely likely > 95%, Very likely > 90%, Likely > 66%, More likely than not > 50%, Unlikely < 33%, Very unlikely < 10%, Extremely unlikely < 5% (see Box TS.1 for more details).

7 In this Summary for Policymakers the following levels of confidence have been used to express expert judgements on the correctness of the underlying science: very high confidence represents at least a 9 out of 10 chance of being correct; high confidence represents about an 8 out of 10 chance of being correct (see Box TS.1).
SPM.1 and SPM.2). The carbon dioxide radiative forcing increased by 20% from 1995 to 2005, the largest change for any decade in at least the last 200 years. {2.3, 6.4}

- Anthropogenic contributions to aerosols (primarily sulphate, organic carbon, black carbon, nitrate and dust) together produce a cooling effect, with a total direct radiative forcing of \(-0.5 \pm 0.9\) W m\(^{-2}\) and an indirect cloud albedo forcing of \(-0.7 \pm 1.8\) to \(-0.3\) W m\(^{-2}\). These forcings are now better understood than at the time of the TAR due to improved in situ, satellite and ground-based measurements and more comprehensive modelling, but remain the dominant uncertainty in radiative forcing. Aerosols also influence cloud lifetime and precipitation. {2.4, 2.9, 7.5}

- Significant anthropogenic contributions to radiative forcing come from several other sources. Tropospheric ozone changes due to emissions of ozone-forming chemicals (nitrogen oxides, carbon monoxide, and hydrocarbons) contribute \(+0.35 \pm 0.25\) to \(+0.65\) W m\(^{-2}\). The direct radiative forcing due to changes in halocarbons\(^8\) is \(+0.34 \pm 0.31\) to \(+0.37\) W m\(^{-2}\). Changes in surface albedo, due to land cover changes and deposition of black carbon aerosols on snow, exert

Radiative Forcing Components

<table>
<thead>
<tr>
<th>RF Terms</th>
<th>RF values (W m(^{-2}))</th>
<th>Spatial scale</th>
<th>LOSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-lived greenhouse gases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratospheric ozone</td>
<td>-0.05 ([-0.15) to (-0.05)</td>
<td>Continental to global</td>
<td>Med</td>
</tr>
<tr>
<td>Stratospheric water vapour from CH(_4)</td>
<td>-0.07 ([-0.02) to (-0.12)</td>
<td>Global</td>
<td>Low</td>
</tr>
<tr>
<td>Surface albedo</td>
<td>-0.2 ([-0.4\ to (-0.0)</td>
<td>Local to continental</td>
<td>Med - Low</td>
</tr>
<tr>
<td>Total Aerosol</td>
<td>-0.5 ([-0.9) to (-0.1)</td>
<td>Continental to global</td>
<td>Med - Low</td>
</tr>
<tr>
<td>Cloud albedo effect</td>
<td>-0.7 ([-1.8) to (-0.3)</td>
<td>Continental to global</td>
<td>Low</td>
</tr>
<tr>
<td>Linear contrails</td>
<td>0.01 (0.003) to (0.03)</td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Total net anthropogenic</td>
<td>0.12 (0.06) to (0.30)</td>
<td>Global</td>
<td>Low</td>
</tr>
</tbody>
</table>

Figure SPM.2. Global average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO\(_2\)), methane (CH\(_4\)), nitrous oxide (N\(_2\)O) and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also shown. These require summing asymmetric uncertainty estimates from the component terms, and cannot be obtained by simple addition. Additional forcing factors not included here are considered to have a very low LOSU. Volcanic aerosols contribute an additional natural forcing but are not included in this figure due to their episodic nature. The range for linear contrails does not include other possible effects of aviation on cloudiness. {2.9, Figure 2.20}

\(^8\) Halocarbon radiative forcing has been recently assessed in detail in IPCC’s Special Report on Safeguarding the Ozone Layer and the Global Climate System (2005).
Summary for Policymakers

• New analyses of balloon-borne and satellite measurements of lower- and mid-tropospheric temperature show warming rates that are similar to those of the surface temperature record and are consistent within their respective uncertainties, largely reconciling a discrepancy noted in the TAR. \(\{2.3, 2.5, 7.2\} \)

• The average atmospheric water vapour content has increased since at least the 1980s over land and ocean as well as in the upper troposphere. The increase is broadly consistent with the extra water vapour that warmer air can hold. \(\{3.4\} \)

• New data since the TAR now show that losses from the ice sheets of Greenland and Antarctica have \textit{very likely} contributed to sea level rise over 1993 to 2003 (see Table SPM.1). \(\{4.6, 4.8, 5.5\} \)

• Global average sea level rose at an average rate of 1.8 \([1.3 \text{ to } 2.3] \) mm per year over 1961 to 2003. The rate was faster over 1993 to 2003: about 3.1 \([2.4 \text{ to } 3.8] \) mm per year. Whether the faster rate for 1993 to 2003 reflects decadal variability or an increase in the longer-term trend is unclear. There is \textit{high confidence} that…

Direct Observations of Recent Climate Change

Since the TAR, progress in understanding how climate is changing in space and in time has been gained through improvements and extensions of numerous datasets and data analyses, broader geographical coverage, better understanding of uncertainties, and a wider variety of measurements. Increasingly comprehensive observations are available for glaciers and snow cover since the 1960s, and for sea level and ice sheets since about the past decade. However, data coverage remains limited in some regions.

Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level (see Figure SPM.3). \(\{3.2, 4.2, 5.5\} \)

• Eleven of the last twelve years (1995–2006) rank among the 12 warmest years in the instrumental record of global surface temperature\(^9 \) (since 1850). The updated 100-year linear trend (1906 to 2005) of 0.74°C [0.56°C to 0.92°C] is therefore larger than the corresponding trend for 1901 to 2000 given in the TAR of 0.6°C [0.4°C to 0.8°C]. The linear warming trend over the last 50 years (0.13°C [0.10°C to 0.16°C] per decade) is nearly twice that for the last 100 years. The total temperature increase from 1850–1899 to 2001–2005 is 0.76°C [0.57°C to 0.95°C]. Urban heat island effects are real but local, and have a negligible influence (less than 0.006°C per decade over land and zero over the oceans) on these values. \(\{3.2\} \)

\(^9 \) The average of near-surface air temperature over land and sea surface temperature.
Summary for Policymakers

FIGURE SPM.3. Observed changes in (a) global average surface temperature, (b) global average sea level from tide gauge (blue) and satellite (red) data and (c) Northern Hemisphere snow cover for March-April. All changes are relative to corresponding averages for the period 1961–1990. Smoothed curves represent decadal average values while circles show yearly values. The shaded areas are the uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c). (FAQ 3.1, Figure 1, Figure 4.2, Figure 5.13)
the rate of observed sea level rise increased from the 19th to the 20th century. The total 20th-century rise is estimated to be 0.17 [0.12 to 0.22] m. {5.5}

- For 1993 to 2003, the sum of the climate contributions is consistent within uncertainties with the total sea level rise that is directly observed (see Table SPM.1). These estimates are based on improved satellite and in situ data now available. For the period 1961 to 2003, the sum of climate contributions is estimated to be smaller than the observed sea level rise. The TAR reported a similar discrepancy for 1910 to 1990. {5.5}

At continental, regional and ocean basin scales, numerous long-term changes in climate have been observed. These include changes in arctic temperatures and ice, widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones.10 {3.2, 3.3, 3.4, 3.5, 3.6, 5.2}

- Average arctic temperatures increased at almost twice the global average rate in the past 100 years. Arctic temperatures have high decadal variability, and a warm period was also observed from 1925 to 1945. {3.2}

- Satellite data since 1978 show that annual average arctic sea ice extent has shrunk by 2.7 [2.1 to 3.3]\% per decade, with larger decreases in summer of 7.4 [5.0 to 9.8]\% per decade. These values are consistent with those reported in the TAR. {4.4}

- Temperatures at the top of the permafrost layer have generally increased since the 1980s in the Arctic (by up to 3°C). The maximum area covered by seasonally frozen ground has decreased by about 7% in the Northern Hemisphere since 1900, with a decrease in spring of up to 15%. {4.7}

- Long-term trends from 1900 to 2005 have been observed in precipitation amount over many large regions.11 Significantly increased precipitation has been observed in eastern parts of North and South America, northern Europe and northern and central Asia. Drying has been observed in the Sahel, the Mediterranean, southern Africa and parts of southern Asia. Precipitation is highly variable spatially and temporally, and data are limited in some regions. Long-term trends have not been observed for the other large regions assessed.11 {3.3, 3.9}

- Changes in precipitation and evaporation over the oceans are suggested by freshening of mid- and high-latitude waters together with increased salinity in low-latitude waters. {5.2}

Table SPM.1. Observed rate of sea level rise and estimated contributions from different sources. {5.5, Table 5.3}

<table>
<thead>
<tr>
<th>Source of sea level rise</th>
<th>Rate of sea level rise (mm per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal expansion</td>
<td>0.42 ± 0.12</td>
</tr>
<tr>
<td>Glaciers and ice caps</td>
<td>0.50 ± 0.18</td>
</tr>
<tr>
<td>Greenland Ice Sheet</td>
<td>0.05 ± 0.12</td>
</tr>
<tr>
<td>Antarctic Ice Sheet</td>
<td>0.14 ± 0.41</td>
</tr>
<tr>
<td>Sum of individual climate contributions to sea level rise</td>
<td>1.1 ± 0.5</td>
</tr>
<tr>
<td>Observed total sea level rise</td>
<td>1.8 ± 0.5*</td>
</tr>
<tr>
<td>Difference (Observed minus sum of estimated climate contributions)</td>
<td>0.7 ± 0.7</td>
</tr>
</tbody>
</table>

Table note:
- * Data prior to 1993 are from tide gauges and after 1993 are from satellite altimetry.

10 Tropical cyclones include hurricanes and typhoons.

11 The assessed regions are those considered in the regional projections chapter of the TAR and in Chapter 11 of this report.
Summary for Policymakers

- Mid-latitude westerly winds have strengthened in both hemispheres since the 1960s. {3.5}

- More intense and longer droughts have been observed over wider areas since the 1970s, particularly in the tropics and subtropics. Increased drying linked with higher temperatures and decreased precipitation has contributed to changes in drought. Changes in sea surface temperatures, wind patterns and decreased snowpack and snow cover have also been linked to droughts. {3.3}

- The frequency of heavy precipitation events has increased over most land areas, consistent with warming and observed increases of atmospheric water vapour. {3.8, 3.9}

- Widespread changes in extreme temperatures have been observed over the last 50 years. Cold days, cold nights and frost have become less frequent, while hot days, hot nights and heat waves have become more frequent (see Table SPM.2). {3.8}

Table SPM.2. Recent trends, assessment of human influence on the trend and projections for extreme weather events for which there is an observed late-20th century trend. (Tables 3.7, 3.8, 9.4; Sections 3.8, 5.5, 9.7, 11.2–11.9)

<table>
<thead>
<tr>
<th>Phenomenon and direction of trend</th>
<th>Likelihood that trend occurred in late 20th century (typically post 1960)</th>
<th>Likelihood of a human contribution to observed trend(^a)</th>
<th>Likelihood of future trends based on projections for 21st century using SRES scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmer and fewer cold days and nights over most land areas</td>
<td>Very likely(^c)</td>
<td>Likely(^c)</td>
<td>Virtually certain(^d)</td>
</tr>
<tr>
<td>Warmer and more frequent hot days and nights over most land areas</td>
<td>Very likely(^a)</td>
<td>Likely (nights)(^a)</td>
<td>Virtually certain(^d)</td>
</tr>
<tr>
<td>Warm spells/heat waves. Frequency increases over most land areas</td>
<td>Likely</td>
<td>More likely than not(^f)</td>
<td>Very likely</td>
</tr>
<tr>
<td>Heavy precipitation events. Frequency (or proportion of total rainfall from heavy falls) increases over most areas</td>
<td>Likely</td>
<td>More likely than not(^f)</td>
<td>Very likely</td>
</tr>
<tr>
<td>Area affected by droughts increases</td>
<td>Likely in many regions since 1970s</td>
<td>More likely than not</td>
<td>Likely</td>
</tr>
<tr>
<td>Intense tropical cyclone activity increases</td>
<td>Likely in some regions since 1970</td>
<td>More likely than not(^f)</td>
<td>Likely</td>
</tr>
<tr>
<td>Increased incidence of extreme high sea level (excludes tsunamis)(^g)</td>
<td>Likely</td>
<td>More likely than not(^f)(^h)</td>
<td>Likely(^i)</td>
</tr>
</tbody>
</table>

Table notes:

\(^a\) See Table 3.7 for further details regarding definitions.

\(^b\) See Table TS.4, Box TS.5 and Table 9.4.

\(^c\) Decreased frequency of cold days and nights (coldest 10%).

\(^d\) Warming of the most extreme days and nights each year.

\(^e\) Increased frequency of hot days and nights (hottest 10%).

\(^f\) Magnitude of anthropogenic contributions not assessed. Attribution for these phenomena based on expert judgement rather than formal attribution studies.

\(^g\) Extreme high sea level depends on average sea level and on regional weather systems. It is defined here as the highest 1% of hourly values of observed sea level at a station for a given reference period.

\(^h\) Changes in observed extreme high sea level closely follow the changes in average sea level. (5.5) It is very likely that anthropogenic activity contributed to a rise in average sea level. (9.5)

\(^i\) In all scenarios, the projected global average sea level at 2100 is higher than in the reference period. (10.6) The effect of changes in regional weather systems on sea level extremes has not been assessed.
• There is observational evidence for an increase in intense tropical cyclone activity in the North Atlantic since about 1970, correlated with increases of tropical sea surface temperatures. There are also suggestions of increased intense tropical cyclone activity in some other regions where concerns over data quality are greater. Multi-decadal variability and the quality of the tropical cyclone records prior to routine satellite observations in about 1970 complicate the detection of long-term trends in tropical cyclone activity. There is no clear trend in the annual numbers of tropical cyclones.\(^{3.8}\)

Some aspects of climate have not been observed to change.\(^{3.2, 3.8, 4.4, 5.3}\)

• A decrease in diurnal temperature range (DTR) was reported in the TAR, but the data available then extended only from 1950 to 1993. Updated observations reveal that DTR has not changed from 1979 to 2004 as both day- and night-time temperature have risen at about the same rate. The trends are highly variable from one region to another.\(^{3.2}\)

• Antarctic sea ice extent continues to show interannual variability and localised changes but no statistically significant average trends, consistent with the lack of warming reflected in atmospheric temperatures averaged across the region.\(^{3.2, 4.4}\)

• There is insufficient evidence to determine whether trends exist in the meridional overturning circulation (MOC) of the global ocean or in small-scale phenomena such as tornadoes, hail, lightning and dust-storms.\(^{3.8, 5.3}\)

A Palaeoclimatic Perspective

Palaeoclimatic studies use changes in climatically sensitive indicators to infer past changes in global climate on time scales ranging from decades to millions of years. Such proxy data (e.g., tree ring width) may be influenced by both local temperature and other factors such as precipitation, and are often representative of particular seasons rather than full years. Studies since the TAR draw increased confidence from additional data showing coherent behaviour across multiple indicators in different parts of the world. However, uncertainties generally increase with time into the past due to increasingly limited spatial coverage.

Palaeoclimatic information supports the interpretation that the warmth of the last half century is unusual in at least the previous 1,300 years. The last time the polar regions were significantly warmer than present for an extended period (about 125,000 years ago), reductions in polar ice volume led to 4 to 6 m of sea level rise.\(^{6.4, 6.6}\)

• Average Northern Hemisphere temperatures during the second half of the 20th century were very likely higher than during any other 50-year period in the last 500 years and likely the highest in at least the past 1,300 years. Some recent studies indicate greater variability in Northern Hemisphere temperatures than suggested in the TAR, particularly finding that cooler periods existed in the 12th to 14th, 17th and 19th centuries. Warmer periods prior to the 20th century are within the uncertainty range given in the TAR.\(^{6.6}\)

• Global average sea level in the last interglacial period (about 125,000 years ago) was likely 4 to 6 m higher than during the 20th century, mainly due to the retreat of polar ice. Ice core data indicate that average polar temperatures at that time were 3°C to 5°C higher than present, because of differences in the Earth’s orbit. The Greenland Ice Sheet and other arctic ice fields likely contributed no more than 4 m of the observed sea level rise. There may also have been a contribution from Antarctica.\(^{6.4}\)
Understanding and Attributing Climate Change

This assessment considers longer and improved records, an expanded range of observations and improvements in the simulation of many aspects of climate and its variability based on studies since the TAR. It also considers the results of new attribution studies that have evaluated whether observed changes are quantitatively consistent with the expected response to external forcings and inconsistent with alternative physically plausible explanations.

Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations. This is an advance since the TAR’s conclusion that “most of the observed warming over the last 50 years is likely to have been due to the increase in greenhouse gas concentrations”. Discernible human influences now extend to other aspects of climate, including ocean warming, continental-average temperatures, temperature extremes and wind patterns (see Figure SPM.4 and Table SPM.2). (9.4, 9.5)

• Warming of the climate system has been detected in changes of surface and atmospheric temperatures in the upper several hundred metres of the ocean, and in contributions to sea level rise. Attribution studies have established anthropogenic contributions to all of these changes. The observed pattern of tropospheric warming and stratospheric cooling is very likely due to the combined influences of greenhouse gas increases and stratospheric ozone depletion. (3.2, 3.4, 9.4, 9.5)

• It is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica (see Figure SPM.4). The observed patterns of warming, including greater warming over land than over the ocean, and their changes over time, are only simulated by models that include anthropogenic forcing. The ability of coupled climate models to simulate the observed temperature evolution on each of six continents provides stronger evidence of human influence on climate than was available in the TAR. (3.2, 9.4)

• Difficulties remain in reliably simulating and attributing observed temperature changes at smaller scales. On these scales, natural climate variability is relatively larger, making it harder to distinguish changes expected due to external forcings. Uncertainties in local forcings and feedbacks also make it difficult to estimate the contribution of greenhouse gas increases to observed small-scale temperature changes. (8.3, 9.4)

• Anthropogenic forcing is likely to have contributed to changes in wind patterns, affecting extratropical storm tracks and temperature patterns in both hemispheres. However, the observed changes in the Northern Hemisphere circulation are larger than simulated in response to 20th-century forcing change. (3.5, 3.6, 9.5, 10.3)

• Temperatures of the most extreme hot nights, cold nights and cold days are likely to have increased due to anthropogenic forcing. It is more likely than not that anthropogenic forcing has increased the risk of heat waves (see Table SPM.2). (9.4)

12 Consideration of remaining uncertainty is based on current methodologies.

13 In particular, the Southern and Northern Annular Modes and related changes in the North Atlantic Oscillation. (3.6, 9.5, Box TS.2)