ADVANCED MAGNETOHYDRODYNAMICS With Applications to Laboratory and Astrophysical Plasmas

Following on from the companion volume *Principles of Magnetohydrodynamics*, this textbook analyzes the applications of plasma physics to thermonuclear fusion and plasma astrophysics from the single viewpoint of MHD. This approach turns out to be ever more powerful when applied to streaming plasmas (the vast majority of visible matter in the Universe), toroidal plasmas (the most promising approach to fusion energy), and nonlinear dynamics (where it all comes together with modern computational techniques and extreme transonic and relativistic plasma flows).

The textbook interweaves theory and explicit calculations of waves and instabilities of streaming plasmas in complex magnetic geometries. It is ideally suited to advanced undergraduate and graduate courses in plasma physics and astrophysics.

J. P. (HANS) GOEDBLOED is an Advisor of the FOM-Institute for Plasma Physics "Rijnhuizen," and Professor Emeritus of theoretical plasma physics at Utrecht University. He has been a Visiting Scientist at laboratories in the Soviet Union, the United States, Brazil and Europe. He has taught at Campinas, Rio de Janeiro, São Paulo, MIT, K.U. Leuven and regularly at Amsterdam Free University and Utrecht University. For many years he coordinated a large-scale computational effort with the Dutch Science Organization on Fast Changes in Complex Flows involving scientists of different disciplines.

RONY KEPPENS is a Professor at the Centre for Plasma-Astrophysics, K.U. Leuven, affiliated with the FOM-Institute for Plasma Physics "Rijnhuizen," and a Professor at Utrecht University. He headed numerical plasma dynamics teams at Rijnhuizen and Leuven and frequently lectures on computational methods in astrophysics. His career started with research at the National Center for Atmospheric Research, Boulder, and the Kiepenheuer Institute for Solar Physics, Freiburg. His expertise ranges from solar physics to high energy astrophysics and includes parallel computing, grid-adaptivity and visualization of large-scale simulations.

STEFAAN POEDTS is full Professor in the department of mathematics at K.U. Leuven. He graduated in Leuven, was a postdoctoral researcher at the Max-Planck-Institut für Plasmaphysik, Garching, a senior researcher at the FOM-Institute for Plasma Physics "Rijnhuizen," and a research associate at the Centre for Plasma Astrophysics, K.U. Leuven. His research interests include solar astrophysics, space weather, thermonuclear fusion and MHD stability. He teaches basic math courses, advanced courses on plasma physics of the Sun and numerical simulation, and is currently president of the European Solar Physics Division of the EPS.

ADVANCED MAGNETOHYDRODYNAMICS

With Applications to Laboratory and Astrophysical Plasmas

J. P. (HANS) GOEDBLOED

FOM-Institute for Plasma Physics "Rijnhuizen" and Astronomical Institute, Utrecht University

RONY KEPPENS

Centre for Plasma-Astrophysics, Katholieke Universiteit Leuven, FOM-Institute for Plasma Physics "Rijnhuizen" and Astronomical Institute, Utrecht University

STEFAAN POEDTS

Centre for Plasma-Astrophysics, Katholieke Universiteit Leuven

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521705240

© J. P. Goedbloed, R. Keppens and S. Poedts 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Goedbloed, J. P., 1940– Advanced magnetohydrodynamics : with applications to laboratory and astrophysical plasmas / J. P. (Hans) Goedbloed, Rony Keppens, Stefaan Poedts. p. cm.

ISBN 978-0-521-87957-6 (hardback) 1. Magnetohydrodynamics. 2. Plasma astrophysics. I. Keppens, Rony. II. Poedts, Stefaan, 1962– III. Title. QC718.5.M36G638 2010 538'.6-dc22 2010000317

> ISBN 978-0-521-87957-6 Hardback ISBN 978-0-521-70524-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Antonia, 陆蓉 (Rong Lu), and Micheline

Preface

Cambridge University Press 978-0-521-70524-0 - Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas J. P. (Hans) Goedbloed, Rony Keppens and Stefaan Poedts Frontmatter <u>More information</u>

Contents

page	X111

	Part	III Fl	ow and dissipation	1
12	Wave	es and i	nstabilities of stationary plasmas	3
	12.1	Labora	atory and astrophysical plasmas	3
		12.1.1	Grand vision: magnetized plasma on all scales	3
		12.1.2	Differences between laboratory and astrophysical plasmas	6
		12.1.3	Plasmas with background flow	12
	12.2	Spectr	al theory of stationary plasmas	13
		12.2.1	Basic equations	13
		12.2.2	Frieman–Rotenberg formulation	16
		12.2.3	Self-adjointness of the generalized force operator \star	22
		12.2.4	Energy conservation and stability	27
	12.3	Solutio	on paths in the complex ω plane	35
		12.3.1	Opening up the boundaries	35
		12.3.2	Approach to eigenvalues	40
	12.4	Literat	ure and exercises	47
13	Shea	r flow a	nd rotation	49
	13.1	Spectr	al theory of plane plasmas with shear flow	49
		13.1.1	Gravito-MHD wave equation for plane plasma flow	49
		13.1.2	Kelvin-Helmholtz instabilities in interface plasmas	55
		13.1.3	Continua and oscillation theorem \mathcal{R} for real eigenvalues	59
		13.1.4	Complex eigenvalues and the alternator	65
	13.2	Case s	tudy: flow-driven instabilities in diffuse plasmas	71
		13.2.1	Rayleigh–Taylor instabilities of magnetized plasmas	73
		13.2.2	Kelvin-Helmholtz instabilities of ordinary fluids	76
		13.2.3	Gravito-MHD instabilities of stationary plasmas	85

viii	Contents	
	13.2.4 Oscillation theorem C for complex eigenvalues	91
	13.3 Spectral theory of rotating plasmas	93
	13.3.1 MHD wave equation for cylindrical flow	93
	13.3.2 Local stability*	98
	13.3.3 WKB approximation	102
	13.4 Rotational instabilities	104
	13.4.1 Rigid rotation of incompressible plasmas	104
	13.4.2 Magneto-rotational instability: local analysis	112
	13.4.3 Magneto-rotational instability: numerical solutions	118
	13.5 Literature and exercises	123
14	Resistive plasma dynamics	127
	14.1 Plasmas with dissipation	127
	14.1.1 Conservative versus dissipative dynamical systems	127
	14.1.2 Stability of force-free magnetic fields: a trap	128
	14.2 Resistive instabilities	135
	14.2.1 Basic equations	135
	14.2.2 Tearing modes	138
	14.2.3 Resistive interchange modes	149
	14.3 Resistive spectrum	150
	14.3.1 Resistive wall mode	150
	14.3.2 Spectrum of homogeneous plasma	155
	14.3.3 Spectrum of inhomogeneous plasma	158
	14.4 Reconnection	162
	14.4.1 Reconnection in 2D Harris sheet	162
	14.4.2 Petschek reconnection	168
	14.4.3 Kelvin–Helmholtz induced tearing instabilities	169
	14.4.4 Extended MHD and reconnection	171
	14.5 Literature and exercises	175
15	Computational linear MHD	177
	15.1 Spatial discretization techniques	178
	15.1.1 Basic concepts for discrete representations	180
	15.1.2 Finite difference methods	182
	15.1.3 Finite element method	186
	15.1.4 Spectral methods	196
	15.1.5 Mixed representations	201
	15.2 Linear MHD: boundary value problems	204
	15.2.1 Linearized MHD equations	204
	15.2.2 Steady solutions to linearly driven problems	206
	15.2.3 MHD eigenvalue problems	209

		Contents	ix
		15.2.4 Extended MHD examples	211
	15.3	Linear algebraic methods	217
		15.3.1 Direct and iterative linear system solvers	217
		15.3.2 Eigenvalue solvers: the QR algorithm	220
		15.3.3 Inverse iteration for eigenvalues and eigenvectors	221
		15.3.4 Jacobi–Davidson method	222
	15.4	Linear MHD: initial value problems	225
		15.4.1 Temporal discretizations: explicit methods	225
		15.4.2 Disparateness of MHD time scales	233
		15.4.3 Temporal discretizations: implicit methods	234
		15.4.4 Applications: linear MHD evolutions	236
	15.5	Concluding remarks	240
	15.6	Literature and exercises	241
	Part	IV Toroidal plasmas	245
16	Stati	c equilibrium of toroidal plasmas	247
	16.1		247
		16.1.1 Equilibrium in tokamaks	247
		16.1.2 Magnetic field geometry	252
		16.1.3 Cylindrical limits	256
		16.1.4 Global confinement and parameters	260
	16.2	Grad–Shafranov equation	269
		16.2.1 Derivation of the Grad–Shafranov equation	269
		16.2.2 Large aspect ratio expansion: internal solution	271
		16.2.3 Large aspect ratio expansion: external solution	277
	16.3	Exact equilibrium solutions	284
		16.3.1 Poloidal flux scaling	284
		16.3.2 Soloviev equilibrium	289
		16.3.3 Numerical equilibria*	293
	16.4	Extensions	299
		16.4.1 Toroidal rotation	299
		16.4.2 Gravitating plasma equilibria*	301
		16.4.3 Challenges	302
	16.5	Literature and exercises	304
17		ar dynamics of static toroidal plasmas	307
	17.1	"Ad more geometrico"	307
		17.1.1 Alfvén wave dynamics in toroidal geometry	307
		17.1.2 Coordinates and mapping	308
		17.1.3 Geometrical-physical characteristics	309

Х	Contents		
	17.2	Analysis of waves and instabilities in toroidal geometry	315
		17.2.1 Spectral wave equation	315
		17.2.2 Spectral variational principle	318
		17.2.3 Alfvén and slow continuum modes	319
		17.2.4 Poloidal mode coupling	322
		17.2.5 Alfvén and slow ballooning modes	326
	17.3	Computation of waves and instabilities in tokamaks	334
		17.3.1 Ideal MHD versus resistive MHD in computations	334
		17.3.2 Edge localized modes	340
		17.3.3 Internal modes	344
		17.3.4 Toroidal Alfvén eigenmodes and MHD spectroscopy	347
	17.4	Literature and exercises	352
18	Line	ar dynamics of stationary toroidal plasmas *	355
	18.1	Transonic toroidal plasmas	355
	18.2	Axi-symmetric equilibrium of transonic stationary states*	357
		18.2.1 General equations and toroidal rescalings ^{\star}	357
		18.2.2 Elliptic and hyperbolic flow regimes ^{\star}	365
		18.2.3 Expansion of the equilibrium in small toroidicity \star	366
	18.3		374
		18.3.1 Reduction for straight-field-line coordinates*	374
		18.3.2 Continua of poloidally and toroidally rotating plasmas*	378
		18.3.3 Analysis of trans-slow continua for small toroidicity*	385
	18.4		392
		18.4.1 Tokamaks and magnetically dominated accretion disks*	393
		18.4.2 Gravity dominated accretion disks*	396
	105	18.4.3 A new class of transonic instabilities Literature and exercises ^{\star}	397
	18.5	Literature and exercises	402
	Part	V Nonlinear dynamics	405
10			
19	Com	putational nonlinear MHD General considerations for nonlinear conservation laws	407 408
	19.1	19.1.1 Conservative versus primitive variable formulations	408
		19.1.1 Conservative versus primitive variable formulations 19.1.2 Scalar conservation law and the Riemann problem	408
		19.1.2 Scalar conservation law and the Kienham problem 19.1.3 Numerical discretizations for a scalar conservation law	420
		19.1.4 Finite volume treatments	430
	19.2		433
	1/14	19.2.1 The Godunov method	434
		19.2.2 A robust shock-capturing method: TVDLF	440
		19.2.3 Approximate Riemann solver type schemes	446
		TI STATES AND STATES	

		Contents	xi
		19.2.4 Simulating 1D MHD Riemann problems	451
	19.3	-	454
		19.3.1 $\nabla \cdot \mathbf{B} = 0$ condition for shock-capturing schemes	455
		19.3.2 Example nonlinear MHD scenarios	461
		19.3.3 Alternative numerical methods	466
	19.4	Implicit approaches for extended MHD simulations	473
		19.4.1 Alternating direction implicit strategies	474
		19.4.2 Semi-implicit methods	475
		19.4.3 Simulating ideal and resistive instability developments	481
		19.4.4 Global simulations for tokamak plasmas	482
	19.5	Literature and exercises	484
20	Tran	sonic MHD flows and shocks	487
	20.1	Transonic MHD flows	487
		20.1.1 Flow in laboratory and astrophysical plasmas	487
		20.1.2 Characteristics in space and time	488
	20.2	Shock conditions	490
		20.2.1 Special case: gas dynamic shocks	492
		20.2.2 MHD discontinuities without mass flow	498
		20.2.3 MHD discontinuities with mass flow	500
		20.2.4 Slow, intermediate and fast shocks	505
	20.3	Classification of MHD shocks	507
		20.3.1 Distilled shock conditions	507
		20.3.2 Time reversal duality	513
		20.3.3 Angular dependence of MHD shocks	520
	20.4	20.3.4 Observational considerations of MHD shocks	527
	20.4	5	529
		20.4.1 Modeling the solar wind–magnetosphere boundary	530
		20.4.2 Modeling the solar wind by itself	531
	20.5	20.4.3 Example astrophysical transonic flows	534
	20.5	Literature and exercises	540
21		MHD in special relativity	543
	21.1		544
		21.1.1 Space-time coordinates and Lorentz transformations	544
		21.1.2 Four-vectors in flat space-time and invariants	547
		21.1.3 Relativistic gas dynamics and stress–energy tensor	551
	21.2	21.1.4 Sound waves and shock relations in relativistic gases	556 564
	21.2	Electromagnetism and special relativistic MHD	564
		21.2.1 Electromagnetic field tensor and Maxwell's equations	564
		21.2.2 Stress–energy tensor for electromagnetic fields	569

xii		Contents	
		21.2.3 Ideal MHD in special relativity	570
		21.2.4 Wave dynamics in a homogeneous plasma	572
		21.2.5 Shock conditions in relativistic MHD	577
	21.3	Computing relativistic magnetized plasma dynamics	580
		21.3.1 Numerical challenges from relativistic MHD	583
		21.3.2 Example astrophysical applications	584
	21.4	Literature and exercises	588
	Арре	endices	591
Α	Vecto	ors and coordinates	591
	A.1	Vector identities	591
	A.2	Vector expressions in orthogonal coordinates	592
	A.3	Vector expressions in non-orthogonal coordinates	600
Refe	erences		604
Inde	ex		629

Preface

This book, together with the preceding *Principles of Magnetohydrodynamics* (to be referred to as Volume [1]), describes the two main applications of plasma physics, laboratory research on thermonuclear fusion energy and plasma-astrophysics of the solar system, stars, accretion disks, etc., from the single viewpoint of magnetohydrodynamics (MHD). This provides effective methods and insights for the interpretation of plasma phenomena on virtually all scales, ranging from the laboratory to the Universe. The key issue is understanding the complexities of plasma dynamics in extended magnetic structures. In Volume [1], the classical MHD model was developed in great detail without omitting steps in the derivations. This necessitated restriction to ideal dissipationless plasmas, in static equilibrium and with inhomogeneity in one direction. In the present volume on Advanced Magnetohydrodynamics [2], these restrictions are relaxed one by one: introducing stationary background flows, resistivity and reconnection, two-dimensional toroidal geometry, linear and nonlinear computational techniques and transonic flows and shocks. These topics transform the subject into a vital new area with many applications in laboratory, space and astrophysical plasmas.

The two volumes now consist of five parts:

- I Plasma physics preliminaries (Volume [1], Chapters 1-3),
- II Basic magnetohydrodynamics (Volume [1], Chapters 4-11),
- III Flow and dissipation (Volume [2], Chapters 12-15),
- IV Toroidal plasmas (Volume [2], Chapters 16–18),
- V Nonlinear dynamics (Volume [2], Chapters 19–21).

Inevitably, with the chosen distinction of topics for Volume [1] (mostly ideal linear phenomena described by self-adjoint linear operators) and topics for Volume [2] (mostly non-ideal, toroidal and nonlinear phenomena), the difference between "basic" and "advanced" levels of magnetohydrodynamics could not be strictly maintained. The logical order required inclusion of some advanced topics in Volume [1],

xiv

Preface

whereas some topics that now appear in Volume [2] (like stationary flows and toroidal effects) really belong to the "principles" of MHD. Difficult parts or asides with tedious derivations, that may be skipped on first reading, are again indicated by a star (*) or put in small print in between triangles ($\triangleright \cdots \triangleleft$).

An overview of the subject matter of the different chapters of the two volumes may help the reader to find his way.

Contents of Volume [1]:

- Chapter 1 gives an introduction to laboratory fusion and astrophysical plasmas, and formulates provisional microscopic and macroscopic definitions of the plasma state.
- Chapter 2 discusses the three complementary points of view of single particle motion, kinetic theory, and fluid description. The corresponding theoretical models provide the opportunity to introduce some of the basic concepts of plasma physics.
- Chapter 3 gives the "derivation" of the macroscopic equations from the kinetic (Boltzmann) equation. Quotation marks because a fully satisfactory derivation can not be given at present in view of the largely unknown contribution of turbulent transport processes. The presentation given is meant to provide some idea on the limitations of the macroscopic view point.
- Chapter 4 defines the MHD model and introduces the concept of scale independence. The central importance of the conservation laws is discussed at length. Based on this, the similarities and differences of laboratory and astrophysical plasmas are articulated in terms of a number of generic boundary value problems.
- Chapter 5 derives the basic MHD waves and describes their properties, with an eye on their role in spectral analysis and computational MHD. The theory of characteristics is introduced as a way to describe the propagation of nonlinear disturbances.
- Chapter 6 treats the subject of waves and instabilities from the unifying point of view of spectral theory. The force operator formulation and the energy principle are extensively discussed. The analogy with quantum mechanics is pointed out and exploited. The difficult extension to interface systems is treated in detail.
- Chapter 7 applies the spectral analysis developed in Chapter 6 to inhomogeneous plasmas in a plane slab. The wave equation for gravito-MHD waves is derived and solved in various limits. Here, all the intricacies of the subject enter: continuous spectra, damping of Alfvén waves, local instabilities, etc. The analogy between helioseismology and MHD spectroscopy in tokamaks is shown to hold great promise for the investigation of plasma dynamics.
- Chapter 8 introduces the enormous variety of magnetic phenomena in astrophysics, in particular for the solar system (dynamo, solar wind, magnetospheres, etc.), and provides basic examples of plasma dynamics worked out in later chapters.
- Chapter 9 is the cylindrical counterpart of Chapter 7, with a wave equation describing the various waves and instabilities. It presents the stability analysis of diffuse cylindrical plasmas (classical pinches and present tokamaks) from the spectral perspective.

Preface

хv

- Chapter 10 solves the initial value problem for one-dimensional inhomogeneous MHD and the associated damping due to the continuous spectrum.
- Chapter 11 discusses resonant absorption and phase mixing in the context of heating mechanisms of solar and stellar coronae. Sunspot seismology is introduced as another example of MHD spectroscopy.

Contents of Volume [2]:

- Chapter 12 initiates the most urgent extension of the theory presented in Volume [1]: waves and instabilities in plasmas with stationary background flows, a theme of common interest for laboratory fusion and astrophysical plasma research. The old problem of how to find the complex eigenvalues of stationary plasmas is solved by means of a new method of constructing solution paths in the complex plane.
- Chapter 13 applies the new theory of Chapter 12 to the two classical topics of shear flow in plane plasma slabs, including the Kelvin–Helmholtz instability, and to rotation in cylindrical plasmas, including the magneto-rotational instability.
- Chapter 14 treats the considerable modification of plasma dynamics when resistivity is introduced in the MHD description, both in the linear domain of spectral theory and in the nonlinear domain of reconnection.
- Chapter 15 introduces the basic techniques of computational MHD, the discretization techniques, the methods of time stepping, etc. It thus provides the modern techniques needed to solve for the dynamics of plasmas in complicated magnetic geometries.
- Chapter 16 presents the classical theory of static equilibrium of toroidal plasmas, a topic of central interest in fusion research of tokamaks. Both analytical theory and numerical solutions are presented.
- Chapter 17 concerns the spectral theory of waves and instabilities in toroidal equilibria, again a central topic in tokamak research. Because of this important application, this part of MHD spectral theory is the most developed one, also with respect to comparison with experimental data. This activity is rightly called *MHD spectroscopy*.
- Chapter 18 introduces the theory of transonic equilibria and spectral theory of those equilibria, a subject of huge interest, but still in its infancy.
- Chapter 19 presents the counterpart of Chapter 15 by introducing the numerical methods for nonlinear MHD, in particular for plasmas with large background flows, applied in the last two chapters.
- Chapter 20 discusses the MHD shock conditions from a new perspective, scale independence leading to time reversal duality, and it introduces some of the important areas of application of nonlinear MHD, viz. astrophysical winds and transonic flows.
- Chapter 21 introduces special relativistic MHD, in particular the linear waves and nonlinear shocks that occur at relativistic speeds. The books ends with applications to astrophysical phenomena, like relativistic jets, and thus completes the panorama of the tremendously exciting field of magnetohydrodynamics dominated by flows.

xvi

Preface

It is impossible to include all topics that actually belong to the field of advanced MHD. Fortunately, books or chapters of books exist on most of those topics, like *dynamos* (Moffatt [337], Ortolani & Schnack [357], Ferriz-Mas & Núñez [133], Rüdiger & Hollerbach [397]); *chaos* (White [483]); *stellarators* (Freidberg [141]); *spheromaks* (Bellan [31]); *anomalous transport* (Balescu [21], Yoshizawa, Itoh & Itoh [492]); *MHD turbulence* (Biskamp [47]).

We wish to acknowledge Guido Huysmans, Jelle Kaastra, Giovanni Lapenta, Sasha Lifschitz, Zakaria Meliani, Gábor Tóth, Ronald Van der Linden and Henk van der Vorst for constructive comments on selected chapters, Jan Willem Blokland for his input on the exercises of various chapters, and Bram Achterberg, Hubert Baty, Sander Beliën, Nicolas Bessolaz, Tom Bogdan, Fabien Casse, Paul Charbonneau, Peter Delmont, Dan D'Ippolito, Jeff Freidberg, Ricardo Galvão, Marcel Goossens, Giel Halberstadt, Tony Hearn, Bart van der Holst, Hanno Holties, Wolfgang Kerner, Rob Kleibergen, Max Kuperus, Keith MacGregor, Daniel Mueller, Valery Nakariakov, Ronald Nijboer, Eric Priest, Jan Rem, Ilia Roussev, Paulo Sakanaka and Karel Schrijver for fruitful collaborations and exchange of ideas. We also thank our copy-editor, Frances Nex, for very careful and efficient editing of our text.

The first author is particularly indebted to the management of the FOM-Institute for Plasma Physics "Rijnhuizen", Aart Kleyn, Niek Lopes Cardozo, Noud Oomens and Jan Kranenbarg, for having provided optimum conditions to work on this book. We also wish to thank Simon Capelin of Cambridge University Press for his support and patience over all those years of preparation of this second volume (a project agreed to be completed in less than two years after the first one), thus accepting the universal validity of the circle theorem.

Circle theorem: The actual time to complete a project is precisely π times the best estimate of the time that one foresees at the beginning of it.

Proof: Standing at the disk of the unknown, the best estimate is based on how long it takes to reach the other side, the actual time spent involves encircling it so as to really enclose it from all sides. That path is precisely π times longer; QED.

Finally, a frequently asked question is: "Will there be a third volume?" Yes, there will be, and you, the serious students of these two volumes who realized that these are just introductions to an enormous field of largely unexplored territory, are going to write it. Remember, with plasmas making up 90% of all (so far visible) matter of the Universe, and plasma physics under-represented in the physics curriculum of the universities, there is no doubt that there will be completely unexpected discoveries for you in store. Nature is on your side!