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12

Waves and instabilities of stationary plasmas

12.1 Laboratory and astrophysical plasmas

12.1.1 Grand vision: magnetized plasma on all scales

In Chapter 1 of the preceding Volume [1] we pointed out that, since more than
90% of visible matter in the Universe is plasma, the dynamics of plasmas and the
associated magnetic fields are an important constituent of the description of nature.
In Chapter 4 [1], we then showed that the equations of magnetohydrodynamics
(MHD) are scale-independent: the scales of length, density and magnetic field
strength of a magnetically confined plasma may be divided out. This simple fact
has the amazing consequence that the macroscopic dynamics of plasmas in both
laboratory fusion devices (tokamaks, stellarators, etc.) and astrophysical objects
(stellar coronae, accretion disks, spiral arms of galaxies, etc.) may be described by
the same equations, viz. the equations of MHD. We encountered several examples
of this before, in Volume [1]. In the present Volume [2], we will continue the
investigation of this common field of research by means of the new “wide-angle
MHD telescope”.

Figure 12.1 shows two representative, but very different, examples from science
and technology, viz. the design drawing of the international tokamak experimen-
tal reactor ITER, presently under construction, and an image made by the Hub-
ble Space Telescope of the Pinwheel Galaxy M101. The consequence of scale-
independence is that the most obvious difference of the two configurations, their
length scale indicated next to the figure, is actually irrelevant for the description of
macroscopic plasma dynamics!

� Scale-dependent models To avoid misunderstanding: small-scale kinetic or two-fluid
effects like electron inertia [20], described by the scale-dependent model of Hall-MHD,
can have macroscopic consequences like reconnection and waves (see Section 14.5), which
may even be detectable by spacecrafts flying through the bow shock of the magnetosphere;
see Stasiewicz [418]. Likewise, in the description of hot plasmas in thermonuclear con-
finement experiments, kinetic effects exhibit a bewildering range of dynamical phenomena
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4 Waves and instabilities of stationary plasmas

on many spatial and temporal scales presenting a challenge to the computational modeling
of these plasmas by different, scale-dependent, fluid closures; see Schnack et al. [403]. �

For our present purpose, the Hubble Space Telescope picture is somewhat mis-
leading since it only shows the stars and dust. Roughly an equal amount of plasma
should be present in the plasma component of galaxies (not counting the plasma
interiors of the stars themselves), and much more mass should be present in the
dark matter component. According to a recent review by Fukugita [150], for the
Universe as a whole the balance is shifted significantly towards plasma: ten times
more mass is present in plasmas than in stars (again, not counting the fact that stars
themselves are mostly plasma). Since we have no clue about the physics of dark
matter, it might be advisable to first investigate the plasma component with all tech-
niques that are presently available. Recalling our critical discussion of the standard
view of nature, which does not articulate the distinction between neutral gas and
plasma, as schematically represented in Figure 1.8 [1], one would expect on the
contrary that the abundance of plasma (≡ abundance of magnetic fields ≡ global
anisotropic dynamics) should play a much more prominent role in the description
of the Universe than it has done up till now.

In fact, there are many signs that astrophysics is beginning to fill in this gap. For
example, when Land and Magueijo [292] established that there is a small but statis-
tically significant anisotropy, with a preferred axis, in the cosmic background radi-
ation as observed with the WMAP satellite, the far-going implications for cosmol-
ogy were immediately realized. A number of researchers, e.g. Hutsemékers [234]
and Longo [316], started to speculate that, amongst other more exotic possibilities,
a large-scale cosmic magnetic field might be involved.

As another example, Kaastra et al. [251], and several other researchers (see the
review by Peterson and Fabian [368]), have recently pointed out that magnetic
fields may play an important role in the dynamics of clusters of galaxies. From
X-ray spectra obtained from the XMM-Newton satellite, they conclude that mag-
netized plasmas in huge magnetic loops, of similar spatial structure to those in
stellar coronae, may be responsible for the temperature decrement observed for
cooling plasma flows in those clusters.

Also, recently, filaments of warm hot intergalactic matter (WHIM) connecting
clusters of galaxies have been detected unequivocally by Werner et al. [478] by
means of X-ray images obtained from the same satellite. This discovery appears
to agree with dark matter simulations that ascribe this “cosmic web” mainly to
dark matter, but it would come as no surprise if the filamentary structure were
associated with a magnetized plasma component as well. The bookkeeping of the
gravitational effects ascribed to dark matter might well change in the direction of a
larger contribution of plasma.

Whatever the final outcome of these debates will be, it is probable that plasma
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12.1 Laboratory and astrophysical plasmas 5

Fig. 12.1 Magnetized plasmas in the laboratory and in astrophysics: (a) the international
tokamak experimental reactor ITER; (b) the Pinwheel Galaxy M101 (HST, NASA-ESA).

and, hence, magnetic fields will become much more central for our understanding
of the dynamics of the Universe at large than presently accounted for.
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6 Waves and instabilities of stationary plasmas

12.1.2 Differences between laboratory and astrophysical plasmas

Although scale-independence of the MHD equations permits analysis of global
plasma dynamics in laboratory and astrophysical plasmas by the same techniques,
the important differences of the parameters that govern overall force balance should
not be lost sight of. For example, the parameter β ≡ 2µ0p/B2 is small for tokamak
plasmas and usually large for astrophysical plasmas, so that plasma dynamics in
tokamaks is always dominated by magnetic fields whereas this may not be the case
for astrophysical plasmas.

Roughly speaking, one could distinguish the two kinds of plasma configurations
on the basis of the following global equilibrium characteristics.

(a) Tokamaks are magneto-hydrodynamic plasmas, with a magnetic field that is approxi-
mately a force-free field (FFF),

j × B ≈ 0 (FFF to leading order) (12.1)

= ∇p ∼ β � 1 (important correction) .

Consequently, the equilibrium is nearly exclusively determined by the magnetic field
geometry, but the pressure corrections are essential since they determine the power
output of a future fusion reactor.

(b) Most astrophysical objects are hydro-magnetic plasmas, with sizeable flows, and the
gravitational acceleration is usually not negligible,

ρv · ∇v + ∇p + ρ∇Φ ≈ 0 (Keplerian flow to leading order) (12.2)

= j × B ∼ β−1 � 1 (important correction) .

Consequently, gravity and rotation usually dominate over the magnetic terms, but the
latter may be crucial for the growth or damping of instabilities (as for the Parker in-
stability, discussed below, and the magneto-rotational instability which even operates
when the magnetic field is infinitesimal, see Section 13.4.2).

It is well known that a force-free magnetic field cannot be extended indefinitely,
as follows from the virial theorem (see Shafranov [409], p. 106). Eventually, the
magnetic pressure has to be balanced by something. In tokamaks, equilibrium is
due to balancing of the Lorentz forces on the plasma by mechanical forces on the
induction coils, which have to be firmly fixed to the laboratory by “nuts and bolts”.
(Without those, the configuration would simply fly apart: a magnetic field of 5 T
exerts a pressure of B2/(2µ0) ≈ 107 N m−2 ≈ 100 atm.) The mechanical coun-
terpart for accretion disks or galaxies is balancing of the centrifugal acceleration
by the gravitational pull of the central objects, which may include a black hole.
The implications of this difference for stability are much more wide-ranging than
generally realized, as will be illustrated by contrasting “intuition” developed on
tokamak stability to some major instabilities operating in astrophysical plasmas.
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12.1 Laboratory and astrophysical plasmas 7

Interchanges in tokamaks and Parker instability in galaxies

To appreciate the issue, let us pronounce some general features of tokamak stability
theory, based on the results from the quasi-cylindrical approximation presented in
Section 9.4 [1] and anticipating the exact toroidal representation to be developed
in Chapter 17. For the present purpose, the difference between the cylindrical
approximation in terms of r, θ and z and the toroidal representation in terms of
ψ (the poloidal magnetic flux, the “radial” coordinate), ϑ (the poloidal angle) and
ϕ (the toroidal angle) may be ignored. Without exaggeration, it may then be said
that the wide variety of MHD instabilities operating in tokamaks, represented by
normal modes of the form

f(ψ, ϑ, ϕ, t) =
∑

m
f̃m(ψ) ei(mϑ+nϕ−ωt) , (12.3)

is unstable only for (approximately) perpendicular wave vectors,

k0 ⊥ B ⇒ −iB · ∇ ∼ m + nq ≈ 0 . (12.4)

The reason is the enormous field line bending energy of the Alfvén waves,

WA ≈ 1
2

∫ [
(k0 · B)2 |n · ξ|2 + · · ·

]
dV � 0 , (12.5)

so that field line localization (k‖ � k⊥) is necessary to eliminate this term and
to get instability from the different higher order terms due to, e.g. pressure gra-
dients and currents. The Ansatz (12.4) is made in virtually all tokamak stability
calculations, like in the derivation of the Mercier criterion [331] involving inter-
changes on rational magnetic surfaces, of ballooning modes [91] involving local-
ization about rational magnetic field lines, of internal kink modes, of neo-classical
tearing modes, of external kink modes, etc.; see Sections 17.2 and 17.3. All in-
volve localization about rational magnetic surfaces, either inside the plasma or in
an outer vacuum. Hence, it became a kind of “intuition” in tokamak physics to
assume that this is a general truth about plasma instabilities.

In contrast, some major instabilities in astrophysical plasmas turn out to operate
under precisely the opposite conditions:

k0 ‖ B ⇒ −iB · ∇ ∼ m + nq ≈ 1 . (12.6)

These include the Parker instability operating in spiral arms of galaxies [365] and
the magneto-rotational instability [467, 83, 18] which is held responsible for the
turbulent dissipation in accretion disks about a compact object. Both have their
largest growth rates when the wave vector k0 is about parallel to the magnetic
field, and certainly not perpendicular! (It is most peculiar that this apparent con-
tradiction with stability of laboratory plasmas went unnoticed so far.) How is the
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8 Waves and instabilities of stationary plasmas

above argument about the dominance of field line bending energy circumvented
for astrophysical plasmas?

In order to answer that question, let us compare how the two entirely different
pairs of equilibrium conditions (12.1) and (12.2), and the associated pairs of in-
stability conditions (12.4) and (12.6), appear in the analysis of the gravitational
interchange [171]. This instability has played an important role in modeling both
the stability of laboratory plasmas (where gravity is used as just a way to simulate
magnetic field line curvature) and the Parker instability [365] which is concerned
with instability due to genuine gravity in spiral arms of galaxies.

To that end, we recapitulate the major conclusions on the gravitational inter-
change from Sections 7.5.2 and 7.5.3 [1], Eqs. (7.199), (7.206) and (7.212). The
stability criterion for gravitational interchanges of a plane plasma slab reads:

− ρN2
B ≡ ρ′g +

ρ2g2

γp
≤ 1

4B2ϕ′2 , (12.7)

where NB is the Brunt–Väisäläa frequency and ϕ′ is the magnetic shear. Without
magnetic shear, stability just appears to depend on the square of the Brunt–Väisäläa
frequency: N2

B ≥ 0 , which amounts to the Schwarzschild criterion for convective
stability when expressed in terms of the equilibrium temperature gradient. This
criterion is obtained from the marginal equation of motion (ω2 = 0) in the limit
of small parallel wave number (k‖ → 0). However, when these two limits are
interchanged (k‖ = 0 and ω2 → 0), an entirely different criterion is obtained:

− ρN2
M ≡ ρ′g +

ρ2g2

γp + B2
≤ 0 , (12.8)

where NM is the magnetically modified Brunt–Väisäläa frequency. The apparent
discrepancy between these stability criteria was resolved by Newcomb [348] who
noted that there is a cross-over of two branches of the local dispersion equation
with the solutions

ω2
1 = (k2

0/k2
eff)N2

M (pure interchanges) , (12.9)

ω2
2 =

N2
B

N2
M

γp

γp + B2

1
ρ

(k0 · B)2 (quasi-interchanges) , (12.10)

where the last mode is the first to become unstable when the density gradient
is increased. The first expression holds for k‖ = 0, where the factor k2

eff ≡
k2

0 + n2π2/a2 indicates clustering of the modes, ω2
1 → 0, when the vertical mode

number becomes large, n → ∞ (this n should not be confused with the toroidal
mode number n introduced above), and the second expression is only valid for
k‖ � k⊥. Hence, field line bending is small in both cases.

In cylindrical and toroidal plasmas, magnetic field line curvature is unavoidable
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12.1 Laboratory and astrophysical plasmas 9

and interchange instabilities then arise when the negative pressure gradient (asso-
ciated with confinement) exceeds the shear of the magnetic field lines, analogous
to the gravitational interchange criterion (12.7). This is expressed by the criteria
of Suydam [427], Eq. (9.118) [1], and Mercier [331], Eq. (17.98). For cylindrical
plasmas without magnetic shear, expressions were derived for the growth rates of
interchanges and quasi-interchanges [474, 160, 177], analogous to Eqs. (12.9) and
(12.10) with the following replacements:

N2
M → 2B2

θ

ρrB2

(
p′ +

γp

γp + B2

2B2
θ

r

)
, N2

B → 2B2
θ

ρrB2
p′ . (12.11)

As illustrated in Figs. 9.15 and 9.11 [1], when p′ becomes negative (violation of the
shearless limit of Suydam’s criterion) first the quasi-interchanges become unstable
and the pure interchanges become unstable when p′ ≤ −γp (γp+B2)−1 (2B2

θ )/r,
in agreement with the expression for the z-pinch derived by Kadomtsev [252].

It would appear that the analogy between plasmas with curved magnetic fields
and gravitational plasmas is perfect: instability only occurs at the interchange value
k‖ = 0 or close to it. However (we now complete the analysis of the gravito-MHD
waves started in Section 7.3.3 [1]), the Parker instability operates under precisely
opposite conditions (k⊥ ≈ 0). For an exponential atmosphere, its growth rate is
given by expanding the expression (7.112) [1]:

ω2 ≈
(
1 +

ρN2
B

k2
effB2

) γp

γp + B2

1
ρ

(k0B)2 . (12.12)

This looks similar to the expression (12.10) for the quasi-interchanges, which gives
the growth rate at k‖ ≈ 0 for localized modes (n → ∞), but it is actually com-
pletely different since the expression (12.12) for the Parker instability requires
k⊥ ≈ 0 and only yields instability for global modes (n ≈ 1). This is so because
the criterion for the Parker instability, k2

effB2 + ρN2
B < 0 , cannot be satisfied for

n → ∞, since keff → ∞ then. In other words, it is very well possible to have a
global instability when the field line bending energy (12.5) is not small at all! This
is also the case for the magneto-rotational instability (see Section 13.4.2).

Hence, MHD instabilities occur in astrophysical plasmas under conditions that
do not allow instability in laboratory plasmas. The reason is the stabilizing “back-
bone” of a large toroidal magnetic field in the latter. Estimating orders of magni-
tudes for an equilibrium with inhomogeneity length scale L, the Parker instability
requires

N2
B ∼ − B2

ρL2
, with β ∼ 1 . (12.13)

(Note that a sizeable magnetic field is required, actually violating the simplified
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10 Waves and instabilities of stationary plasmas

order of magnitude estimate β � 1 of Eq. (12.2)(b).) In contrast, the correspond-
ing term of Eq. (12.11)(b) for curvature–pressure gradient driven interchanges in
quasi-cylindrical/toroidal equilibria requires

2B2
θ

ρrB2
p′ ∼ −ε2β · B2

ρL2
, with ε ≡ a/R0 � 1 , β ∼ ε2 . (12.14)

In the first case, the driving force of the instability can compete with the field
line bending contributions (12.5). In the latter case, because of the small factor
ε2β ∼ ε4, this is impossible so that pressure-driven interchanges in cylindrical
and toroidal plasmas never occur for k0 ‖ B. Consequently, tokamak “intuition”
focusing on rational magnetic surfaces and field lines as exclusively determining
stability may be misleading for astrophysical plasmas.

The two different view points can be reconciled as follows. Whereas the condi-
tion (12.4) for tokamak instability automatically leads to study of the degeneracy
and couplings of the Alfvén and slow continua close to marginal stability (ω ≈ 0),
an entirely different path to avoid the stabilizing contribution (12.5) of the Alfvén
waves is exploited by the Parker instabilities. These are actually modified slow
magneto-acoustic waves avoiding the coupling to the Alfvén waves by remaining
orthogonal to them: the polarization (expressed by the eigenvector ξ) of the Parker
(slow) modes is parallel to B (flow along the magnetic field is essential), whereas
the polarization of the Alfvén waves is mainly perpendicular to B. This orthogo-
nality is clearly exhibited by Fig. 12.2, which shows the complete low-frequency
part of the spectrum of modes for a gravitating plasma slab with exponential de-
pendence on height of the density, magnetic field and pressure, for different values
of the angle ϑ between the horizontal wave vector k0 and the magnetic field.

The exponentially stratified equilibrium was analyzed in Section 7.3.2 [1], result-
ing in the dispersion equation (7.116) with solutions shown in Fig. 7.10 for fixed
angle ϑ. These solutions are now shown in Fig. 12.2(a) for all directions of k0. At
ϑ = 0 (k0 ‖ B0), the Parker instability has its largest growth rate, whereas around
ϑ = 1

2π (k0 ⊥ B0), the interchanges and quasi-interchanges operate. These two
ranges correspond to two different instability mechanisms: in the k‖ ≈ 0 range,
coupling of local (high n) slow and Alfvén modes causes interchange or quasi-
interchange instability, whereas in the range k⊥ ≈ 0, global (low n) instability
of the slow magneto-sonic branch, viz. the Parker instability, occurs. In the in-
termediate range, there is a smooth transformation from the Parker instability to
interchanges via modes that we have termed quasi-Parker instabilities.

The local interchange and quasi-interchange instabilities are modified substan-
tially by the introduction of magnetic shear,

B = B0e−
1
2
αx [ sin(λx)ey + cos(λx)ez] . (12.15)
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12.1 Laboratory and astrophysical plasmas 11
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Fig. 12.2 Spectrum of slow (quasi-Parker) instabilities, connecting the Parker instability
to the quasi-interchanges, and Alfvén waves for different angles between k0 and B0 for
exponential atmosphere with (a) uni-directional field (λ̄ = 0), (b) magnetic shear (λ̄ = 0.3)
and genuine continua ω̄2

A and ω̄2
S; ᾱ = 20, β = 0.5, k̄2

0 = 10, q̄ = nπ (n = 1, 2, . . . , 10).

Except for modifying the stability properties, it also leads to the bands of contin-
uous spectra ω2

A and ω2
S separating the Alfvén waves from the gravitational insta-
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