Index

abortion, cell donation for
neurotransplantation 194–5
adult stem cells see somatic stem cells
(SSCs)
afterlife, arguments for 15–18
Age of Enlightenment 37–8
AIDS dementia 19
Alzheimer's disease (AD)
cell therapy 191, 197, 208
gene therapy 28
loss of autonomy 141–4
molecular treatment trial 193
reactivation of atrophic neurons 23–5
use of fMRI 246
amygdala 9, 10, 19, 69, 358
amyotrophic lateral sclerosis (ALS) 208, 209, 273
anger circuit 69
animal cells see xenotransplantation/
xenografting
anorexia nervosa 19
anterior cingulate gyrus 5, 6
anti-substantialism 100
Arendt, Hannah 141–2
Aristotle 146–7, 166, 168
attention-deficit hyperactivity
disorder (ADHD) 326, 349
automaticity of actions xvi–xvii
autonomy
abstract concept 134–5
and freedom 138–40
and illness 142–4
and morality 135
and rational capacity 135
and the language of the body 141–4
anthropological focus 135
connection with embodiment 136–44
effects of degenerative neurological
disease 141–4
ethical conception 135
freedom of religion and conscience 134
history of the concept 134–6
legal–political notion 134
modern concept 135–6
neuroethics of pain care 180–1
of sociopolitical entities 134
origins 134
regulation of choice of actions 135
related to emancipation 134, 135
social aspect 134
view within religious thought 135
see also moral autonomy
autoscopy 16–17
availability heuristic xvii
bed nucleus of the stria terminalis
(BSTc) 13–15
behavioral genetics
consequences of scientific
reductionism 217–22
epistemological approaches
217–22
biases xvi–xviii
bioethics xiv, 350
biofeedback, pain control 5
biological clock 3–4, 20, 21, 25
bodily consciousness 138
brain
central role 2–3
computer metaphor 3
constituents of a theory of the brain
147–8
energy requirements 3
functions of neurons 2–5
metaphors for 3
structure and functions 2–5
see also mind–brain relationship
brain cell culture after death 17, 18, 25
brain–computer interfaces (BCIs) 271
EEG-based interfaces 272–5, 277
enhancement applications 279
fMRI 276
history of BCI research 272–4
imaging technologies 276
increasing therapeutic options 285
invasive technologies 275–6
lie detection 277–8
neuroprostheses 272, 276–7
non-invasive technologies 274–5
potential ethical considerations
range of applications 276–7
replacing lost functionality 272,
273–4, 276–7
threat to privacy of thought 277–9
types of brain signals used for
control 272–6
virtual worlds 271–2
brain development
changes during 7–15
eye imprinting 7–8, 10–15
genre identity 7, 8, 10–15
religious convictions 8
restrictions caused by organization
8–9
sexual differentiation 10–15
sexual orientation 7, 8
brain disorders
diagnostic and therapeutic
developments 18–19
patient-tailored therapy 20–1
reactivation of atrophic neurons
23–5
brain function restoration 25–30
brain–machine interfaces 26
see also brain–computer interfaces
bypassing nervous system damage
26
gene therapy 28–9
intervention neurology 27–8
neural transplantation 26–7
neuroprosthetics 26
repair of local lesions 26–7
spinal cord injury 29–30
stem cell therapy 29–30
brain–machine interfaces 26
see also brain–computer interfaces
brain–mind relationship see mind–
brain relationship
brain prostheses (BPs) 285
brain research, changing focus 1
brain scans
desire to use predictively 366–7
legitimacy conferred by 365–7
limits of contribution to self-
understanding 369
persuasive effects on those viewing
them 365–7
separating science from scientism
355–6
see also fMRI; neuroimaging
brain stroke, cell therapy 191, 197,
208
causality, mind–body relationship
106–14
cell therapy see neurotransplantation
Center for Neurotechnology Studies
(CNS), workshops on ELSI and
public policy 305–17
cerebral characterology 260–1
Chalmers, David, hard problem of
consciousness 66, 72–7
Churchland, Paul 363–4, 368
clinical practice, influence of
epistemological approach 222–5
cluster headache 21
cochlear implants 272, 285
cognitive neurobiology
neural-network models of moral
cognition 148–70
reciprocal interaction with moral
theory 147–8
computer metaphor for the brain 3, 78
computers see brain–computer
interfaces (BCIs)
Comte, Auguste 37
correlation bias xvii–xviii
congenital adrenal hyperplasia (CAH)
13
cognition 136
and embodiment 138
and moral capacity 138
consciousness
advent of 114–15
as a field phenomenon 109
evolution of 102–3, 110, 112,
114–15
mind as 96
self-organization theory 80–91
see also hard problem of
consciousness
consciousness studies
emergentism 62
historical influences on current debate 50–60
implications for neuroethics 62–3
influences on postmodern thinking 50–60
insights from the history of ideas 60–3
study of altered states 49–50
use of metaphors from contemporary technology 61

see also mind, theories of consent
cell donation from abortion 195
human blastocyst donation 196–7
neurological patients 206–7, 209–10
policy issues in brain interventions 324

consequentialism xx
cranial electrotherapy stimulation (CES) 284
criminal behavior, and brain disorders 19
critical window concept in development 1
culture, interaction with brain development 8
cyberthink 289, 296
“cyborgization” (machine interfacing) of the human body 179
cytoarchiteconics 261

DARPA, brain–machine interface program 286
Decade of Pain Control and Research (2000–2010) xxix
Decade of the Brain (1990–2000) xxv, xxix
Decade of the Mind project xxix, 306, 319, 345
depth psychology 97
Descartes, René 2, 97, 100, 101, 106, 109
diagnoscopy 259

Dostoevsky, Fyodor 16
drug treatments, causal interpretations 220–2
dystonia 21

Eccles, John 100
ECOg (electrocorticogram) 275
EEG (electroencephalography) 245, 259–60
EEG-based BCIs 272–5, 277
EEG studies, influence on theories of consciousness 78
embodiment
and autonomy 136–44
and conscience 138
and personal identity 136–8
language of the body 141–4
embryonic germ cells 192
embryonic stem cells (ESCs) 191, 192–3
neurotransplantation 29–30, 191, 196–8

emergentism 62, 223
empiricism
crime with idealism 38, 41–4
debate on limits of 42–4
encapsulated cells, use in neurotransplantation 193

enhancement
policy issues 326
use of BCIs 279
see also neural engineering; treatment–enhancement debate
epilepsy
and religious experiences 15–16
cell therapy 191, 208
epiphenomenalism 107, 112–13, 114
epistemic crisis xxvii–xxviii

epistemological approaches
behavioral genetics 217–22
emergentist framework 223
ethical consequences 222–5
influence on clinical practice 222–5
interpretation of biological causality 222–3

pharmacogenomics 217–22

scientific reductionism 217–22

epistemological (good, valid) version of the hard problem 73–7
ethical implications of neuroscience 323

euthanasia 323
eugens 323

© in this web service Cambridge University Press
Index

378 event-related desynchronization BCIs 273, 274–5
evolution of consciousness 102–3, 110, 112, 114–15
extistential view of human life 141
experimental psychology
founding of 39–41, 47
Wundt’s restrictions on scope 49–50
experimental spiritism 38
explanation by correlation, avoiding 68–70, 80
explanatory gap argument 73, 74, 75, 104
explanatory reduction 364

Fechner, Gustav 40, 43, 44, 45
Flanagan, Owen 166, 169
fMRI (functional magnetic resonance imaging)
BOLD (blood oxygenation level dependent) contrast method 232, 245
brain scanning 3, 5
data processing 245
discovery 245
indirect measurement of neuronal activity 231–2
limitations of functional imaging 360–2
non-quantitative nature 231
raw images produced by scanning 231–3
scanning technique 231–3
spatial resolution of raw data 232–3
temporal resolution of raw data 232–3
typical experimental method 245–6
fMRI applications
clinical applications 246–9
commercial use in lie detection 237–9
detection of consciousness in brain injury 247, 248–9, 253
ethical and scientific concerns 236–41
“instant science” versus peer-review 239–40
lie detection 249–50
neuromarketing 240–1
persuasive power of images 230–1
prediction of political preference 240–1
prediction of preferences in marketing 239–40
presentation of results in the media 230–1, 237–41

presurgical mapping of brain function 246, 247–8
fMRI-based BCIs 276
fMRI constraints and limitations 231
collection of signals from different tasks 235–6
effects of data processing 233–5
effects of the experimental design 237
factors affecting the BOLD signal 237
subtraction method 236, 360–2
timescale disconnect 362
fMRI data processing 233–6
data preprocessing 233–4
generation of pictures showing areas of activation 235
group-based analysis 235
motion correction (realignment) 233–4
multiple comparisons problem 235
spatial normalization 234
statistical analysis 234–5
fMRI interpretation
deriving meaning from signals 250–2
equating structure and function 252–3
experimental design and task selection 253–4
neuro-essentialism 256–8
neuro-policy 257, 260–2
neuro-realism 257, 258–60
neuroethical challenge 250–62
neuroethical responsibilities 262–5
popular portrayal as mind-reading 258–62
scientific interpretation 250–6
social and cultural interpretations 256–62
statistical analysis of fMRI data 254–6
fMRI research
investigation of brain function 246
social and policy implications 246
fMRI studies
avoiding explanation by correlation 68–9
cortical bias 78–80
influence on theories of consciousness 78–80
insensitivity to timing 79
Fodor, Jerry 356, 363
freedom and autonomy 138–40
law of 139
situated freedom 138–40
Freud, Sigmund 15

functionalist versions of physicalism 104–5

gender identity and brain development 7, 8, 10–15
gene therapy, brain function restoration 28–9
genetics 338–9
genetic determinism in research 217–22
genetic factors in susceptibility to pain syndromes 174–5

genetic testing ethical issues in data interpretation 222–5

effects of pre-symptomatic testing 224–5

potential consequences for individuals 224–5

genetics policy-making 338–9

use of neurogenetic information 183

Geschwind syndrome 16

glial cell line-derived neurotrophic factor (GDNF) treatment 28–9

glial precursor cells, neurotransplantation 193

government involvement in neuroscience, range of options 328–30

hard problem of consciousness 66 avoiding explanation by correlation 68–70, 80

epistemological (good, valid) version 73–7

`explanatory gap´ argument 73, 74, 75

influence of available instrumentation 78–80

`knowledge argument´ of consciousness 71, 77, 81, 83, 86

Kuhnian paradigm shifts 78

mental causation problem 71–2, 86

multiple realizability problem 77

ontological (bad, invalid) version 73, 74, 75, 76–7

philosophical paradoxes 70–2

practical implications 67–70

search for a general theory of consciousness 78–80

self-organization theory of consciousness 80–91

sources of bias in research 78–80

two hard problem arguments 72–7

hard problems of neuroscience xxvi

health care, ethical use of scientific understanding 225–7

heart, and emotions 5–6

Hegel, Georg Wilhelm Friedrich 139–40

Heidegger, Martin 60

Helmholtz, Hermann von 40, 43–4, 47, 48

heuristics xvii

higher-level phenomena, explanation of 364–5

hippocampus, artificial 285

Hippocrates 2

Hobbes, Thomas 165

homosexuality, and brain development 12

human blastocysts, use in neurotransplantation 196–8

human condition criteria for identifying psychiatric disease 348–51

criteria for normality 348–51

definition of disease and illness 348–9

striving for improvement 343–5

treatment-enhancement debate 344–51

Human Genome Project, ELSI research 305

human identity see identity; personal identity

Huntington’s disease (HD) 27, 191, 208–9, 210, 211

Huxley, Thomas H. 112

hypothalamic paraventricular nucleus 20

hypothalamo-neurohypophysial system 20

hypothalamo-pituitary-adrenal (HPA) axis 20

“I”, relationship to the physical brain 55–60

idealism, controversy with empiricism 38, 41–4

identity and embodiment 136–8

and illness 142–4

see also personal identity

identity theory 102, 105–6, 113

illness, definition 226, 348–9

in vitro fertilization (IVF) treatment, donation of surplus blastocysts 196–8

information-gulping sixth sense 288, 291–2
Index

informed consent 195
human blastocyst donation 196–7
neurological patients 206–7, 209–10
policy issues in brain interventions 324
interactionism 107, 114
interiority and embodiment 136–7
and personal identity 141
human capacity for 141, 144
use of imagination and metaphors 141–4
international neuroethics policy 337–8
Internet 271, 278
intervention neurology 27–8
Joan of Arc 16
John Paul II, Pope 139
Johnson, Mark 166
Jonas, Hans 137
Kant, Immanuel xix, 135, 139, 165
Kantian philosophy, influence on theories of mind 41–3
“knowledge argument” of consciousness 71, 77, 81, 83, 86
Kuhn, Thomas xxviii
Kuhnian revolutions in the philosophy of mind 74, 78
language development 7–8
LBS neurons (Layton BioScience neurons) 193
lie detection 327
and psychological modularity 358–9, 362
EDA (electrodermal activity) measurement 277–8
use of neuroimaging 358–9
localization of cognitive processes 356–60
locked-in syndrome 273, 285
machine interfacing (“cyborgization”) of the human body 183
see also brain–computer interfaces (BCIs)
MacIntyre, Alasdair 166–9, 356
maldynia 176–7
McGinn, Colin 55, 56, 58
media portrayal of scientific research 327
MEG (magnetoencephalography) 245, 275, 277
Meinhof, Ulrike 9
memory, unreliability of xvii–xviii
mental causation problem 71–2, 86, 110–14
mental functions distributed nature 357–8, 361–2
gap between the knowable and the known 362–4
limitations of functional imaging 360–2
localization thesis 356–60
modular theory 356–60
subtraction method of processing brain scans 360–2
mental health conceptions of 225–7
ethics of neurogenetics 225–7
metaethics, reciprocal interaction with cognitive neurobiology 147–8
microarray techniques 19
mind as product of the brain 3, 5
taxonomies of 356–60
versus soul 15–18
mind–body issue advent of consciousness 114–15
anti-substantialism 100
causal relations 106–14
causality question 98–9
consciousness as a field phenomenon 109
epiphenomenalism 107, 112–13, 114
evolution of consciousness 102–3, 110, 112, 114–15
functionalist versions of physicalism 104–5
identity theory 102, 105–6, 113
interactionism 107, 114
interpretation of correlations 98–9
mental causation dilemmas 110–14
mind as consciousness 96
nature of the problem 95–9
non-reductive physicalism 102, 103
ontological question 97–8, 99
panspsychism 102
parallellism 107
phenomena of depth psychology 97
physicalism 103–6, 110–11, 113
property dualism 101–3, 114
pros and cons of dualism 99–103
reductive physicalism 103–4
soul 97–8, 99–101
substance dualism (substantialism) 95, 99–101
supervenience relations 98–9, 113
unconscious or subconscious states 97
mind-brain relationship 9
ethics of neurogenetics 225–7
limit of contribution from brain scans 369
relevance of ordinary experience 368–9
mind control 296–7, 325
mind-matter relation, history of debate 55–60
mind-merging 289
mind, theories of
consequences of Kantian philosophy 41–3
controversy between idealism and empiricism 38, 41–4
debate on limits of empiricism 42–4
dispute on spiritism (Leipzig 1877) 44–7
emergentism 62
experimental spiritism 38
historical influences on current debate 50–60
implications for neuroethics 62–3
implications of non-Euclidean geometry 42–4
influences on postmodern thinking 50–60
insights from the history of ideas 60–3
nineteenth century controversies 41–50
psychophysical parallelism 50, 55
psychophysiological theory 38, 40
rational empiricism 38
rise of rational and scientific concepts 37–8
separation of psychology and philosophy 37–8
use of metaphors from contemporary technology 61
Wundt’s rejection of spiritism 46–9
minimally conscious patients, use of fMRI 247, 248–9, 253
modular theory of mind 356–62
molecular replacement, neurotransplantation 193
molecular treatment, neurotransplantation 193
moral ambiguity, neural-network model 155
moral argument, neural-network model 156
moral autonomy, effects of personal maturation 141
see also autonomy
moral character, neural-network model 157–8
moral cognition, developments in understanding 146–7
moral cognitive phenomena, neural-network models 148–70
moral conflict, neural-network model 155–6
moral correction, neural-network model 160–3
moral deliberation, threats from sciences of the mind xviii–xxi
moral diversity, neural-network model 163
moral knowledge, neural-network model 149–53
moral learning, neural-network model 153–4
moral pathology, neural-network model 158–60
moral perception, neural-network model 154–5
moral progress comparison with scientific progress 166–70
neural-network model 163–5
moral theory, reciprocal interaction with cognitive neurobiology 147–8
moral unity/systematicity, neural-network model 165–6
moral virtues, neural-network model 156–7
MRI scans, diagnostic potential 18–19
see also MRI
multiple realization 106
multiple realizability problem of philosophy 77
multiple sclerosis (MS) 21, 29, 191, 197, 208
multiple systemic atrophy (MSA) 191
NASA, extension of human senses program 286
National Nanotechnology Initiative, ELSI research 305
National Neurotechnology Initiative (NNTI) 319
NBIC (nano-bio-info-cogno) convergence 287, 288
near-death experiences 16–18
nerve growth factor (NGF) gene therapy 28
neural engineering
 brain–computer interfaces (BCIs) 285
 brain prostheses (BPs) 285
 converging technologies 287
 cranial electrotherapy stimulation (CES) 284
 deep brain stimulation (DBS) 284
 developing field of research 283–4
 enhancing desirable traits 286–7
 increasing therapeutic options 284–5
 NBIC (nano-bio-info-cogno) convergence 287, 288
 neural prostheses (NPs) 285
 scope of research 283–4
 transcranial magnetic stimulation (TMS) 284
neural engineering future prospects 287–90
 challenge to personal identity 295
 cyberthink 289, 296
 disconnection from real life 297–9
 effects on personal authenticity 294–5
 ethical challenges of enhancement 290–9
 improvement of cognitive abilities 289
 improvement of mood and vegetative functions 289–90
 improvement of motor abilities 288–9
 improvement of sensory abilities 288
 memory enhancement 289
 mind control potential 296–7
 mind-merging 289
 potential demand for enhancements 290
 pressures for limitless enhancement 293–4
 privacy of personal information 295–6
 proportionality between benefits and risks 291–2
 shift from therapy to enhancement 287–8
 social justice and the “neurodivide” 292–3
 surveillance monopolies 296
 threat to autonomy 297
 transparency in society 295–6
 virtual experience machine 297–9
 neural grafting see neurotransplantation
 neural-network models of cognition 148–70
moral ambiguity 155
moral argument 156
moral character 157–8
moral conflict 155–6
moral correction 160–3
moral diversity 163
moral knowledge 149–53
moral learning 153–4
moral pathology 158–60
moral perception 154–5
moral progress 163–5
moral unity/systematicity 165–6
moral virtues 156–7
scope of application 149
virtue ethics 166–70
neural prostheses (NPs) 285
neural tissue implantation see neurotransplantation
neural transplantation see neurotransplantation
neuro-essentialism 256–8
neuro-realism 257, 258–60
neuro-talk and psychological modularity 358
 separating science from scientism 355–6
 use of brain scans to support 355–6
neuroethics
 branches of xiv–xxi
 definition xxvi
 development of the discipline xxv–xviii
 drawing together science and philosophy xiii
 implications of the debate on consciousness 62–3
 links with neuropolicy 323–4
 origin of the term xxvi
 structure and functions xxvi–xxvii
neuroethics agenda see neuropolicy making
Neuroethics, Legal, and Social Issues (NELSI) initiative 306
neuroethics of pain care 172
 access to new treatments 183–4
 capacities and limitations of neuroimaging 182
 caring for vulnerable individuals 180–1
 consistency with scientific and ethical traditions 180
 ethical issues 180–2
 integrative approach 185
 machine interfacing (“cyborgization”) 183
 nature of “good” pain care 181–2, 185
Index

neuroscience of ethics xvi, 323
neuroscience of pain, heuristic value 174–6
neuroscientific developments
brain function restoration 25–30
brain structure and functions 2–5
central role of the brain 2–3
changing focus of brain research 1
computer metaphor for the brain 3
deep brain stimulation 21–2
development of the brain 7–15
early imprinting of the brain 7–8, 10–15
mechanisms of placebo effects 22–3
metaphors for the brain 3
patient-tailored therapy 20–1
questions arising from 136
reactivation of atrophic neurons 23–5
restorative neuroscience 25–30
sexual differentiation of the brain 10–15
neurotechnology as a public good
achieving widely supported public policy 303–19
ethical, legal, and social implications (ELSI) 303–19
framework for future studies of ELSI 317–19
mapping the path forward 317–19
need for evaluation and guidance processes 302–3
workshops on ELSI and public policy 305–17
neurotheology 136
neurotherapy, diagnostic and therapeutic developments 18–19
neurotransplantation 26–7, 183
abortion and the separation principle 194–5
animal cells 193, 198–9
autologous hESCs 198
clinical trials in humans 190–1
consent for cell donation 195
definition 191
difficulty of obtaining cells for transplantation 192
donation of in vitro human blastocysts 196–8
embryonic stem cells (ESCs) 191, 196–8
encapsulated cells 193
ethical debate 191
ethical guidance for retrieval of cells 194–9
glial precursor cells 193
human embryonic or fetal cells 192–4
see also stem cells
molecular replacement 193
molecular treatment 193
neural autografts 193
non-reproductive creation of the human blastocyst 197–8
range of treatment approaches 192
retrieval of primary cells 194–5
somatic stem cells (SSCs) 197–8, 200
stem cells 191, 192–4, 196–8
substantia nigra cells 190–1, 192
types of cell implant 192–4
viral vector-mediated gene transfer 198
xenograft tissue sources 198–9
xenotransplantation 193
neurotransplantation clinical trials 202–10
applicability of animal results to humans 202–4
clinical trial design 204–5
core assessment protocol (CAP) 207–9
defined target for the intervention 203–4
ethics of placebo control treatments 204–7
informed consent 206–7, 209–10
irreversible nature of treatment 202, 204
justification for human trials 202–4
patient expectations 206–7
role of animal experimentation 203–4
sham surgery as control 205–7
vulnerability of patients 206–7, 209–10
neurotransplantation risks
cancer risk 199–200
genetic quality of implanted cells 199
microbiological safety of implanted cells 199
personality effects 200–1
physiological and behavioral side effects 200
psychic effects 200–1
surgical risks 199–200
transfer of psychic elements 202
weighing against benefits 199–202
xenografts 202, 211
NIRS (near infrared spectroscopy) 275
non-reductive physicalism 102, 103

normality, criteria for 348–51

obesity 22

obsessive–compulsive disorder (OCD) 22

ontological reduction 364

ontological (bad, invalid) version of the hard problem 73, 74, 75, 76–7

out-of-body experiences 16–17

P300 wave-driven BCIs 272–3, 275

pain approach to pain research 177–8 as a spectrum disorder 174, 176

boundaries of objective information 179
classification schemes 174
cognitive effects of persistent pain 175

cognitive effects of persistent pain

complex nature of 173–4
definitions of maldynia 176–7
effects on the brain and mind 175

embodiment 173–4

experiential dimension 173–4

imperative to evaluate and treat 179–80

in non-human organisms 179–80, 181

individuality of experience 178–9

internal and external influences 177–8

neuropsychological foundation 173

objective explanation 173–4

relating explanation to experience 178

source of the feeling of pain 175–6

subjective understanding 173–4

uncertainty of others’ subjective experience 179

unique individual experience 175–6

see also neuroethics of pain care

pain control using biofeedback 5

pain disorders, implications of genetic test data 222–5

pain medicine, causal interpretations of drug treatments 220–2

pain relief, deep brain stimulation 21

pain research

consequences of scientific reductionism 217–22

“disease” model 222–3

genetic determinism 217–22

“illness” model 222

value of integrative pain research 177–8

pain syndromes, genetic susceptibility 174–5

pain therapeutics

approaches to the study of pain 173–4

assessment of pain 178–9

consilience of science and philosophy 173

imperative for right and good care 172

imperative to evaluate and treat 179–80

limits to knowing others’ pain 178–9

reciprocity between science and philosophy 173

panpsychism 102

parallelism 107

paralysed patients, use of BCIs 273–4, 276–7, 285

paraventricular nucleus 20

Parkinson’s disease (PD)

clinical trials of neural grafting (cell therapy) 190–1, 192

deep brain stimulation 21

developments in treatment 19

GDNF treatment trials 28–9
gene therapy 28–9

neurotransplantation interventions 26–7, 190–1, 194, 197, 201, 207–9, 211

placebo effects 22–3

patient-tailored therapy for brain disorders 20–1

Paul (apostle) 16

personal identity

challenges for neuroscience 120–2

challenges from emerging neuroscience 125–32
definition 122

importance in the modern age 119–22

influence of the modern context 119–22

manipulation of 130

nature of 117–18

scientific view 120–1

web of relations 122

PET (positron emission tomography) 244, 245, 251

see also neuroimaging

pharmacogenomics

consequences of scientific reductionism 217–22

epistemological approaches 217–22

philosophy-science separation xiii

phrenology 260

physicalism 103–6, 110–11, 113
Pinker, Steven 55, 56, 58, 362
placebo effect, neurobiological mechanisms 22–3
Plato 95, 97
policy dimensions of neuroscience 327–30
ethical, legal, and social implications (ELSI) of neurotechnology 303–19
governmental response to developments 328–30
individual use of technologies 328
nuroethics and public policy 323–4
regulatory policy 329–30
research and development of technologies 328
societal consequences of widespread application 328
policy issues of brain intervention 324–7
access to services 325–6
commercial uses of cognitive neuroscience 327
discrimination and stigmatization 325
distinction between experimentation and therapy 324–5
freedom and equality issues 327
individual responsibility 325
informed consent 324
detection 327
media portrayal of scientific research 327
mind control 325
nature of information to be collected 327
nuromarketing 327
onmental contribution to health outcomes 326
priority in relation to other health care areas 326
risks and uncertainties 324–5
social advantage from enhancement 326
specific treatment issues 326
use in non-medical, commercial settings 325
use of information that is collected 327
vulnerability of patients 324–5
policy-making process 334–5
international neuroethics policy 337–8
lessons from genetics and genetic policy 338–9
role of expert input 335–7
stages of policy making 330–2
post-traumatic tremor 21
primary cells, retrieval for neurotransplantation 194–5
privacy of thought 277–9
property dualism 101–3, 114
proteomics, use in brain disorders 19
psychiatric disease, criteria for identifying 348–51
psychiatry, use of deep brain stimulation 22
psychology 364–5
explanation of higher-level phenomena 364–5
localization of cognitive processes 356–60
reductive materialism 364–5, 367–8
rise of academic psychology 37–8
separation from philosophy 37–8
taxonomies of mind 356–60
use of neuroimaging 356
psychophysical parallelism 50, 55
psychophysiological theory 38, 40
public policy 328
rational empiricism 38
rational enquiry, threat from sciences of the mind xvi–xviii
Rawls 165
recovered memories, unreliability xvii–xviii
reductionism 38
reductionism see scientific reductionism
reductive materialism in psychology 364–5, 367–8
reductive physicalism 103–4
reflexivity 136
religion 134, 135
contemporary renaissance 58–9
religious convictions, and brain development 8
religion and autonomy 134, 135
research bias, sources of 78–80
estorative neuroscience 25–30
retinal implants 272, 285
schizophrenia, causes and treatments 19
Schrödinger, Erwin 102
science–philosophy separation xiii
scientific reductionism
bias caused by methodology 217–22
brain–mind relationship 225–7
conflation of illness and disease 226
confusing description and explanation 218–22
consequences in behavioral genetics 217–22
consequences in pharmacogenomics 217–22
ethical implications 220–2
scientism, separating science from self-articulacy 123
challenges for neuroscience 120–2
challenges from emerging neuroscience 125–32
commitments which shape personhood 123
embodiment 122
features of a plausible view of 122–5
importance in the modern age 119–22
influence of the modern context 119–22
justifiable appropriation claim 122
manipulation of 130
multidimensionality 122
nature of 117–18
reflective stance 123–4
reflexivity 123
relationship to the physical brain 55–60
scientific view 120–1
search for 2
self-distancing relationship 123–4
sense of see interiority
self-organization theory of consciousness 80–91
self-understanding
limit of contribution from brain scans 369
relevance of ordinary experience 368–9
sensory/motor (SMR) and mu-rhythm-driven BCIs 273, 274–5
separation principle
cell donation from abortion 195
cell donation from IVF programs 196–7
serotonergic function, interpretation of genetic data 218, 219
sexual differentiation of the brain 10–15
gender identity 7, 8, 10–15
homosexuality 12
influence of testosterone 10–11
sexual orientation 7, 8, 10–15
transsexuality 12–15
sexual orientation, and brain development 7, 8, 10–15
situated freedom 138–40
Slade, Henry 45–7
slow cortical potentials (SCP), use in BCIs 273, 274
somatic cell nuclear transfer (SCNT) 197
somatic stem cells (SSCs) 193, 197–8, 200
soul and the mind–body issue 97–8, 99–101
search for evidence 15–18
SPECT (single photon emission computed tomography) 245, 261, 262
spinal cord injury 277
cell therapy 191
experimental repair strategies 29–30
spiritism 44–9
stem cell therapy 29–30
cancer risk 199–200
stem cells
cloning in the laboratory 192
embryonic germ cells 192
embryonic stem cells (ESCs) 191, 192–3
 genetic quality 199–200
microbiological safety 199
neural stem cell research 183
neurotransplantation 191, 192–4, 196–8
retrieval for neurotransplantation 196–8
somatic stem cells (SSCs) 193, 197–8, 200
sources of 192–3
stroke 27–8, 191, 197, 208
subconscious states 97
substance dualism (substantialism) 95, 99–101
substantia nigra cells, neurotransplantation 190–1, 192
suprachiasmatic nucleus (biological clock) 3–4, 20, 21, 25
synapses in the brain 3
tabula rasa theory of the newborn 8, 11
tardive dyskinesia 21
taxonomies of mind 356–60
Index

388 technology, metaphors for interpreting consciousness 61
unconscious states 97
Utta, William 357–8, 362
Van Gogh, Vincent 16
Vegetative state patients, use of fMRI 247, 248–9, 253
Virtue ethics 166–70
Wittgenstein, Ludwig 100, 182
Wundt, Wilhelm

978-0-521-70303-1 - Scientific and Philosophical Perspectives in Neuroethics
Edited by James J. Giordano and Bert Gordijn
Index

388 technology, metaphors for interpreting consciousness 61
therapeutic cloning 197
thought, product of the brain 3, 5
Thought-Translation-Device (TTD) 273, 274
Tinnitus in deaf patients 19
Tourette syndrome 21
transcranial magnetic stimulation (TMS) 284
transplantation see neurotransplantation
transsexuality, and brain development 12–15

treatment–enhancement debate criteria for identifying psychiatric disease 348–51
criteria for normality 348–51
culture and social conventions 344–8
definition of disease and illness 348–9
human striving for improvement 343–5
tremor, use of deep brain stimulation 21

388 xenotransplantation/xenografting 193

cambridge.org

© in this web service Cambridge University Press