Understanding Probability

Chance events are commonplace in our daily lives. Every day we face situations where the result is uncertain, and, perhaps without realizing it, we guess about the likelihood of one outcome or another. Fortunately, mastering the concepts of probability can cast new light on situations where randomness and chance appear to rule.

In this fully revised second edition of *Understanding Probability*, the reader can learn about the world of probability in an appealing way. The author demystifies the law of large numbers, betting systems, random walks, the bootstrap, rare events, the central limit theorem, the Bayesian approach, and more.

This second edition has wider coverage, more explanations and examples and exercises, and a new chapter introducing Markov chains, making it a great choice for a first probability course. But its easy-going style makes it just as valuable if you want to learn about the subject on your own, and high school algebra is really all the mathematical background you need.

Henk Tijms is Professor of Operations Research at the Vrije University in Amsterdam. The author of several textbooks, including *A First Course in Stochastic Models*, he is intensively active in the popularization of applied mathematics and probability in Dutch high schools. He has also written numerous papers on applied probability and stochastic optimization for international journals, including *Applied Probability* and *Probability in the Engineering and Informational Sciences*.
Understanding Probability
Chance Rules in Everyday Life

Second Edition

HENK TIJMS
Vrije University
Contents

Preface ix

Introduction 1

PART ONE: PROBABILITY IN ACTION 9

1 Probability questions 11

2 The law of large numbers and simulation 17
 2.1 The law of large numbers for probabilities 18
 2.2 Basic probability concepts 27
 2.3 Expected value and the law of large numbers 32
 2.4 The drunkard’s walk 37
 2.5 The St. Petersburg paradox 39
 2.6 Roulette and the law of large numbers 41
 2.7 The Kelly betting system 44
 2.8 Random-number generator 50
 2.9 Simulating from probability distributions 55
 2.10 Problems 64

3 Probabilities in everyday life 73
 3.1 The birthday problem 74
 3.2 The coupon collector’s problem 79
 3.3 Craps 82
 3.4 Gambling systems for roulette 86
 3.5 The 1970 draft lottery 89
 3.6 Bootstrap method 93
 3.7 Problems 95
Contents

Part 1: Elementary Probability

1. **Random experiments and their outcomes**
 - Random experiments
 - Random outcomes
 - Probabilities
 - Experiments with equally likely outcomes
 - Probabilities of events
 - Joint and conditional probabilities
 - Bayes' rule

2. **The binomial distribution**
 - The binomial distribution
 - The binomial coefficient
 - Bernoulli trials and the binomial distribution
 - The binomial distribution revisited
 - Expected value and variance of a binomial distribution
 - The binomial distribution and the normal distribution
 - The binomial distribution and the Poisson distribution
 - The binomial distribution and the central limit theorem
 - Problems

3. **The Poisson distribution**
 - The Poisson distribution
 - The Poisson process
 - The Poisson distribution and the normal distribution
 - The Poisson distribution and the binomial distribution
 - The Poisson distribution and the central limit theorem
 - Problems

4. **The hypergeometric distribution**
 - The hypergeometric distribution
 - Expected value and variance of a hypergeometric distribution
 - Binomial distribution and hypergeometric distribution
 - Problems

5. **Applications of probability**
 - Applications of the binomial distribution
 - Applications of the Poisson distribution
 - Applications of the hypergeometric distribution
 - Problems

6. **Conditional probability and Bayes' rule**
 - Conditional probability
 - Bayes' rule
 - Bayesian statistics
 - Problems

7. **Introduction to probability theory**
 - Probability theory
 - Compound chance experiments
 - Some basic rules
 - Problems

Part Two: Essentials of Probability

8. **The normal curve**
 - The normal curve
 - The concept of standard deviation
 - The square-root law
 - The central limit theorem
 - Graphical illustration of the central limit theorem
 - Statistical applications
 - Confidence intervals for simulations
 - The central limit theorem and random walks
 - Falsified data and Benford's law
 - The normal distribution strikes again
 - Statistics and probability theory
 - Problems

9. **Chance trees and Bayes' rule**
 - The Monty Hall dilemma
 - The test paradox
 - Problems

10. **Foundations of probability theory**
 - Probabilistic foundations
 - Compound chance experiments
 - Some basic rules

11. **Conditional probability and Bayes**
 - Conditional probability
 - Bayes' rule in odds form
 - Bayesian statistics

12. **Basic rules for discrete random variables**
 - Random variables

References

- Tijms, Henk
- Cambridge University Press
- www.cambridge.org

Frontmatter

More information
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Expected value</td>
<td>264</td>
</tr>
<tr>
<td>9.3</td>
<td>Expected value of sums of random variables</td>
<td>268</td>
</tr>
<tr>
<td>9.4</td>
<td>Substitution rule and variance</td>
<td>270</td>
</tr>
<tr>
<td>9.5</td>
<td>Independence of random variables</td>
<td>275</td>
</tr>
<tr>
<td>9.6</td>
<td>Special discrete distributions</td>
<td>279</td>
</tr>
<tr>
<td>10</td>
<td>Continuous random variables</td>
<td>284</td>
</tr>
<tr>
<td>10.1</td>
<td>Concept of probability density</td>
<td>285</td>
</tr>
<tr>
<td>10.2</td>
<td>Important probability densities</td>
<td>296</td>
</tr>
<tr>
<td>10.3</td>
<td>Transformation of random variables</td>
<td>308</td>
</tr>
<tr>
<td>10.4</td>
<td>Failure rate function</td>
<td>310</td>
</tr>
<tr>
<td>11</td>
<td>Jointly distributed random variables</td>
<td>313</td>
</tr>
<tr>
<td>11.1</td>
<td>Joint probability densities</td>
<td>313</td>
</tr>
<tr>
<td>11.2</td>
<td>Marginal probability densities</td>
<td>319</td>
</tr>
<tr>
<td>11.3</td>
<td>Transformation of random variables</td>
<td>323</td>
</tr>
<tr>
<td>11.4</td>
<td>Covariance and correlation coefficient</td>
<td>327</td>
</tr>
<tr>
<td>12</td>
<td>Multivariate normal distribution</td>
<td>331</td>
</tr>
<tr>
<td>12.1</td>
<td>Bivariate normal distribution</td>
<td>331</td>
</tr>
<tr>
<td>12.2</td>
<td>Multivariate normal distribution</td>
<td>339</td>
</tr>
<tr>
<td>12.3</td>
<td>Multidimensional central limit theorem</td>
<td>342</td>
</tr>
<tr>
<td>12.4</td>
<td>The chi-square test</td>
<td>348</td>
</tr>
<tr>
<td>13</td>
<td>Conditional distributions</td>
<td>352</td>
</tr>
<tr>
<td>13.1</td>
<td>Conditional probability densities</td>
<td>352</td>
</tr>
<tr>
<td>13.2</td>
<td>Law of conditional probabilities</td>
<td>356</td>
</tr>
<tr>
<td>13.3</td>
<td>Law of conditional expectations</td>
<td>361</td>
</tr>
<tr>
<td>14</td>
<td>Generating functions</td>
<td>367</td>
</tr>
<tr>
<td>14.1</td>
<td>Generating functions</td>
<td>367</td>
</tr>
<tr>
<td>14.2</td>
<td>Moment-generating functions</td>
<td>374</td>
</tr>
<tr>
<td>15</td>
<td>Markov chains</td>
<td>385</td>
</tr>
<tr>
<td>15.1</td>
<td>Markov model</td>
<td>386</td>
</tr>
<tr>
<td>15.2</td>
<td>Transient analysis of Markov chains</td>
<td>394</td>
</tr>
<tr>
<td>15.3</td>
<td>Absorbing Markov chains</td>
<td>398</td>
</tr>
<tr>
<td>15.4</td>
<td>Long-run analysis of Markov chains</td>
<td>404</td>
</tr>
</tbody>
</table>
Appendix Counting methods and e^x 415
Recommended reading 421
Answers to odd-numbered problems 422
Bibliography 437
Index 439
When I was a student, a class in topology made a great impression on me. The teacher asked me and my classmates not to take notes during the first hour of his lectures. In that hour, he explained ideas and concepts from topology in a nonrigorous, intuitive way. All we had to do was listen in order to grasp the concepts being introduced. In the second hour of the lecture, the material from the first hour was treated in a mathematically rigorous way and the students were allowed to take notes. I learned a lot from this approach of interweaving intuition and formal mathematics.

This book, about probability as it applies to our daily lives, is written very much in the same spirit. It introduces the reader to the world of probability in an informal way. It is not written in a theorem-proof style. Instead, it aims to teach the novice the concepts of probability through the use of motivating and insightful examples. In the book, no mathematics are introduced without specific examples and applications to motivate the theory. Instruction is driven by the need to answer questions about probability problems that are drawn from real-world contexts. Most of the book can easily be read by anyone who is not put off by a few numbers and some high school algebra. The informal yet precise style of the book makes it suited for classroom use, particularly when more self-activation is required from students. The book is organized into chapters that may be understood if read in a nonlinear order. The concepts and the ideas are laid out in the first part of the book, while the second part covers the mathematical background. In the second part of the book, I have chosen to give a short account of the mathematics of the subject by highlighting the essentials in about 200 pages, which I believe better contributes to the understanding of the student than a diffuse account of many more pages. The book can be used for a one-quarter or one-semester course in a wide range of disciplines ranging from social sciences to engineering. Also, it is an ideal book to use as a supplementary text in more mathematical treatments of probability.
Preface

The book distinguishes itself from other introductory probability texts by its emphasis on why probability works and how to apply it. Simulation in interaction with theory is the perfect instrument to clarify and to enliven the basic concepts of probability. For this reason, computer simulation is used to give the reader insights into such key concepts as the law of large numbers, which come to life through the results of many simulation trials. The law of large numbers and the central limit theorem are at the center of the book, with numerous examples based on these main themes. Many of the examples deal with lotteries and casino games. The examples help the reader develop a “feel for probabilities.” Good exercises are an essential part of each textbook. Much care has been paid to collecting exercises that appeal to the understanding and creativity of the reader rather than requiring the reader to plug numbers into formulas. Several of the examples and exercises in this book are inspired by material from the website of “Chance News.” This website contains a wealth of material on probability and statistics. Finally, the text is enlivened with cartoons combining chance and humor, which were supplied by www.cartoonstock.com.

New to this edition

The first edition of the book was very well received, notably by people from outside the field of mathematics. Many readers expressed in their correspondence that they enjoyed the style of the book with its Parts One and Two, where the informal Part One motivates probabilistic thinking through many fascinating examples and problems from the real world and Part Two teaches the more formal mathematics. The comments and recommendations helped me to improve the book further. Part One has remained largely the same, but Part Two has been changed and expanded. The second part has been made self-contained for a first course in probability by adding more explanations and examples in almost every chapter. Also, the second part has been expanded by adding an introductory chapter on Markov chains, particularly suited for students in computer science and engineering. In the same style as the other chapters, the topic of Markov chains is taught by presenting interesting and realistic examples. A solutions manual containing solutions to all of the exercises was prepared for instructors. Finally, educational software supporting this book can be freely downloaded from http://staff.feweb.vu.nl/tijms.