
1

Gauss’s law for electric fields

In Maxwell’s Equations, you’ll encounter two kinds of electric field: the

electrostatic field produced by electric charge and the induced electric field

produced by a changing magnetic field. Gauss’s law for electric fields

deals with the electrostatic field, and you’ll find this law to be a powerful

tool because it relates the spatial behavior of the electrostatic field to the

charge distribution that produces it.

1.1 The integral form of Gauss’s law

There are many ways to express Gauss’s law, and although notation

differs among textbooks, the integral form is generally written like this:I
S

~E � n̂ da ¼ qenc

e0
Gauss’s law for electric fields (integral form).

The left side of this equation is no more than a mathematical description

of the electric flux – the number of electric field lines – passing through a

closed surface S, whereas the right side is the total amount of charge

contained within that surface divided by a constant called the permittivity

of free space.

If you’re not sure of the exact meaning of ‘‘field line’’ or ‘‘electric flux,’’

don’t worry – you can read about these concepts in detail later in this

chapter. You’ll also find several examples showing you how to use

Gauss’s law to solve problems involving the electrostatic field. For

starters, make sure you grasp the main idea of Gauss’s law:

Electric charge produces an electric field, and the flux of that field

passing through any closed surface is proportional to the total charge

contained within that surface.
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In other words, if you have a real or imaginary closed surface of any size

and shape and there is no charge inside the surface, the electric flux

through the surface must be zero. If you were to place some positive

charge anywhere inside the surface, the electric flux through the surface

would be positive. If you then added an equal amount of negative charge

inside the surface (making the total enclosed charge zero), the flux would

again be zero. Remember that it is the net charge enclosed by the surface

that matters in Gauss’s law.

To help you understand the meaning of each symbol in the integral

form of Gauss’s law for electric fields, here’s an expanded view:

How is Gauss’s law useful? There are two basic types of problems that

you can solve using this equation:

(1) Given information about a distribution of electric charge, you can

find the electric flux through a surface enclosing that charge.

(2) Given information about the electric flux through a closed surface,

you can find the total electric charge enclosed by that surface.

The best thing about Gauss’s law is that for certain highly symmetric

distributions of charges, you can use it to find the electric field itself,

rather than just the electric flux over a surface.

Although the integral form of Gauss’s law may look complicated, it is

completely understandable if you consider the terms one at a time. That’s

exactly what you’ll find in the following sections, starting with ~E, the

electric field.

 ˆ �0
=
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qencdanE

Reminder that this
integral is over a
closed surface

The electric
field in N/C

Reminder that this is a surface
integral (not a volume or a line integral)

Reminder that the
electric field is a
vector

The unit vector normal
to the surface

The amount of 
charge in coulombs

Reminder that only
the enclosed charge
contributes

An increment of
surface area in m2

Tells you to sum up the
contributions from each
portion of the surface

The electric
permittivity
of the free space

Dot product tells you to find
the part of E parallel to n
(perpendicular to the surface)

ˆ

∫
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~E The electric field

To understand Gauss’s law, you first have to understand the concept of

the electric field. In some physics and engineering books, no direct def-

inition of the electric field is given; instead you’ll find a statement that an

electric field is ‘‘said to exist’’ in any region in which electrical forces act.

But what exactly is an electric field?

This question has deep philosophical significance, but it is not easy to

answer. It was Michael Faraday who first referred to an electric ‘‘field of

force,’’ and James Clerk Maxwell identified that field as the space around

an electrified object – a space in which electric forces act.

The common thread running through most attempts to define the

electric field is that fields and forces are closely related. So here’s a very

pragmatic definition: an electric field is the electrical force per unit charge

exerted on a charged object. Although philosophers debate the true

meaning of the electric field, you can solve many practical problems by

thinking of the electric field at any location as the number of newtons of

electrical force exerted on each coulomb of charge at that location. Thus,

the electric field may be defined by the relation

~E �
~Fe

q0
; ð1:1Þ

where ~Fe is the electrical force on a small1 charge q0. This definition

makes clear two important characteristics of the electric field:

(1) ~E is a vector quantity with magnitude directly proportional to force

and with direction given by the direction of the force on a positive

test charge.

(2) ~E has units of newtons per coulomb (N/C), which are the same as

volts per meter (V/m), since volts¼ newtons ·meters/coulombs.

In applying Gauss’s law, it is often helpful to be able to visualize the

electric field in the vicinity of a charged object. The most common

approaches to constructing a visual representation of an electric field are

to use a either arrows or ‘‘field lines’’ that point in the direction of

the field at each point in space. In the arrow approach, the strength of the

field is indicated by the length of the arrow, whereas in the field line

1 Why do physicists and engineers always talk about small test charges? Because the job of
this charge is to test the electric field at a location, not to add another electric field into the
mix (although you can’t stop it from doing so). Making the test charge infinitesimally
small minimizes the effect of the test charge’s own field.
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approach, it is the spacing of the lines that tells you the field strength

(with closer lines signifying a stronger field). When you look at a drawing

of electric field lines or arrows, be sure to remember that the field exists

between the lines as well.

Examples of several electric fields relevant to the application of Gauss’s

law are shown in Figure 1.1.

Here are a few rules of thumb that will help you visualize and sketch

the electric fields produced by charges2:

� Electric field lines must originate on positive charge and terminate on

negative charge.

� The net electric field at any point is the vector sum of all electric fields

present at that point.

� Electric field lines can never cross, since that would indicate that the

field points in two different directions at the same location (if two or

more different sources contribute electric fields pointing in different

directions at the same location, the total electric field is the vector sum

Positive point charge Negative point charge Infinite line of
positive charge

Infinite plane of
negative charge

Positively charged
conducting sphere

Electric dipole with
positive charge on left

+ -

Figure 1.1 Examples of electric fields. Remember that these fields exist

inthree dimensions; full three-dimensional (3-D) visualizations are available

on the book’s website.

2 In Chapter 3, you can read about electric fields produced not by charges but by changing
magnetic fields. That type of field circulates back on itself and does not obey the same
rules as electric fields produced by charge.

A student’s guide to Maxwell’s Equations4

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70147-1 - A Student’s Guide to Maxwell’s Equations
Daniel Fleisch
Excerpt
More information

http://www.cambridge.org/0521701473
http://www.cambridge.org
http://www.cambridge.org


of the individual fields, and the electric field lines always point in the

single direction of the total field).

� Electric field lines are always perpendicular to the surface of a

conductor in equilibrium.

Equations for the electric field in the vicinity of some simple objects

may be found in Table 1.1.

So exactly what does the ~E in Gauss’s law represent? It represents the

total electric field at each point on the surface under consideration. The sur-

face may be real or imaginary, as you’ll see when you read about the

meaning of the surface integral in Gauss’s law. But first you should consider

the dot product and unit normal that appear inside the integral.

Table 1.1. Electric field equations for simple objects

Point charge (charge¼ q) ~E ¼ 1

4pe0

q

r2
r̂ (at distance r from q)

Conducting sphere (charge¼Q) ~E ¼ 1

4pe0

Q

r2
r̂ (outside, distance r from
center)

~E ¼ 0 (inside)

Uniformly charged insulating
sphere (charge¼Q, radius¼ r0)

~E ¼ 1

4pe0

Q

r2
r̂ (outside, distance r from
center)

~E ¼ 1

4pe0

Qr

r30
r̂ (inside, distance r from
center)

Infinite line charge (linear
charge density¼ k)

~E ¼ 1

2pe0

k
r
r̂ (distance r from line)

Infinite flat plane (surface
charge density¼ r)

~E ¼ r
2e0

n̂
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� The dot product

When you’re dealing with an equation that contains a multiplication

symbol (a circle or a cross), it is a good idea to examine the terms on

both sides of that symbol. If they’re printed in bold font or are wearing

vector hats (as are ~E and n̂ in Gauss’s law), the equation involves vector

multiplication, and there are several different ways to multiply vectors

(quantities that have both magnitude and direction).

In Gauss’s law, the circle between ~E and n̂ represents the dot product

(or ‘‘scalar product’’) between the electric field vector ~E and the unit

normal vector n̂ (discussed in the next section). If you know the Cartesian

components of each vector, you can compute this as

~A � ~B ¼ AxBx þ AyBy þ AzBz: ð1:2Þ
Or, if you know the angle h between the vectors, you can use

~A �~B ¼ j~Ajj~Bj cos h; ð1:3Þ

where j~Aj and j~Bj represent the magnitude (length) of the vectors. Notice

that the dot product between two vectors gives a scalar result.

To grasp the physical significance of the dot product, consider vectors

~A and ~B that differ in direction by angle h, as shown in Figure 1.2(a).

For these vectors, the projection of ~A onto ~B is j~Aj cos h, as shown

in Figure 1.2(b). Multiplying this projection by the length of ~B gives

j~Ajj~Bj cos h. Thus, the dot product ~A �~B represents the projection of ~A

onto the direction of ~B multiplied by the length of ~B.3 The usefulness of

this operation in Gauss’s law will become clear once you understand the

meaning of the vector n̂.

A(a) (b) A

B
B

u u

The projection of A onto B: |A| cos u
multiplied by the length of B: 3|B|

gives the dot product A B:    |A||B|cos u

Figure 1.2 The meaning of the dot product.

3 You could have obtained the same result by finding the projection of ~B onto the direction

of ~A and then multiplying by the length of ~A.
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n̂ The unit normal vector

The concept of the unit normal vector is straightforward; at any point on a

surface, imagine a vector with length of one pointing in the direction per-

pendicular to the surface. Such a vector, labeled n̂, is called a ‘‘unit’’ vector

because its length is unity and ‘‘normal’’ because it is perpendicular to the

surface. The unit normal for a planar surface is shown in Figure 1.3(a).

Certainly, you could have chosen the unit vector for the plane in

Figure 1.3(a) to point in the opposite direction – there’s no fundamental

difference between one side of an open surface and the other (recall that

an open surface is any surface for which it is possible to get from one side

to the other without going through the surface).

For a closed surface (defined as a surface that divides space into an

‘‘inside’’ and an ‘‘outside’’), the ambiguity in the direction of the unit

normal has been resolved. By convention, the unit normal vector for a

closed surface is taken to point outward – away from the volume enclosed

by the surface. Some of the unit vectors for a sphere are shown in Figure

1.3(b); notice that the unit normal vectors at the Earth’s North and South

Pole would point in opposite directions if the Earth were a perfect sphere.

You should be aware that some authors use the notation d~a rather

than n̂ da. In that notation, the unit normal is incorporated into the

vector area element d~a, which has magnitude equal to the area da and

direction along the surface normal n̂. Thus d~a and n̂ da serve the same

purpose.

Figure 1.3 Unit normal vectors for planar and spherical surfaces.
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~E� n̂ The component of ~E normal to a surface

If you understand the dot product and unit normal vector, the meaning of

~E � n̂ should be clear; this expression represents the component of the

electric field vector that is perpendicular to the surface under consideration.

If the reasoning behind this statement isn’t apparent to you, recall that

the dot product between two vectors such as ~E and n̂ is simply the pro-

jection of the first onto the second multiplied by the length of the second.

Recall also that by definition the length of the unit normal is one ðjn̂j ¼ 1),

so that

~E � n̂ ¼ j~Ejjn̂j cos h ¼ j~Ej cos h; ð1:4Þ
where h is the angle between the unit normal n̂ and ~E. This is the com-

ponent of the electric field vector perpendicular to the surface, as illus-

trated in Figure 1.4.

Thus, if h¼ 90�, ~E is perpendicular to n̂, which means that the electric

field is parallel to the surface, and ~E � n̂ ¼ j~Ej cosð90�Þ ¼ 0. So in this case

the component of ~E perpendicular to the surface is zero.

Conversely, if h¼ 0�, ~E is parallel to n̂, meaning the electric field is

perpendicular to the surface, and ~E � n̂ ¼ j~Ej cosð0�Þ ¼ j~Ej. In this case,

the component of ~E perpendicular to the surface is the entire length of ~E.

The importance of the electric field component normal to the surface

will become clear when you consider electric flux. To do that, you

should make sure you understand the meaning of the surface integral

in Gauss’s law.

n E

Component of  E normal

to surface is E    n

Surface

^

^

Figure 1.4 Projection of ~E onto direction of n̂.
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R
S
ðÞda The surface integral

Many equations in physics and engineering – Gauss’s law among them –

involve the area integral of a scalar function or vector field over a spe-

cified surface (this type of integral is also called the ‘‘surface integral’’).

The time you spend understanding this important mathematical oper-

ation will be repaid many times over when you work problems in

mechanics, fluid dynamics, and electricity and magnetism (E&M).

The meaning of the surface integral can be understood by considering a

thin surface such as that shown in Figure 1.5. Imagine that the area

density (the mass per unit area) of this surface varies with x and y, and

you want to determine the total mass of the surface. You can do this by

dividing the surface into two-dimensional segments over each of which

the area density is approximately constant.

For individual segments with area density ri and area dAi, the mass of

each segment is ri dAi, and the mass of the entire surface of N segments is

given by
P

N
i¼1ri dAi. As you can imagine, the smaller you make the area

segments, the closer this gets to the true mass, since your approximation

of constant r is more accurate for smaller segments. If you let the seg-

ment area dA approach zero and N approach infinity, the summation

becomes integration, and you have

Mass ¼
Z
S

rðx; yÞ dA:

This is the area integral of the scalar function r(x, y) over the surface S. It
is simply a way of adding up the contributions of little pieces of a

function (the density in this case) to find a total quantity. To understand

the integral form of Gauss’s law, it is necessary to extend the concept of

the surface integral to vector fields, and that’s the subject of the next

section.

Area density (s)
varies across surface

Density approximately constant over
each of these areas (dA1, dA2, . . . , dAN)

s1 s2 s3

sΝ

Density =  s(x,y) Mass = s1 dA1+ s2 dA2+ . . . + sN dAN. 
x

y

Figure 1.5 Finding the mass of a variable-density surface.
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R
s
~A � n̂ da The flux of a vector field

In Gauss’s law, the surface integral is applied not to a scalar function

(such as the density of a surface) but to a vector field. What’s a vector

field? As the name suggests, a vector field is a distribution of quantities in

space – a field – and these quantities have both magnitude and direction,

meaning that they are vectors. So whereas the distribution of temperature

in a room is an example of a scalar field, the speed and direction of the

flow of a fluid at each point in a stream is an example of a vector field.

The analogy of fluid flow is very helpful in understanding the meaning

of the ‘‘flux’’ of a vector field, even when the vector field is static and

nothing is actually flowing. You can think of the flux of a vector field

over a surface as the ‘‘amount’’ of that field that ‘‘flows’’ through that

surface, as illustrated in Figure 1.6.

In the simplest case of a uniform vector field ~A and a surface S per-

pendicular to the direction of the field, the flux U is defined as the product

of the field magnitude and the area of the surface:

U ¼ j~Aj · surface area: ð1:5Þ

This case is shown in Figure 1.6(a). Note that if ~A is perpendicular to the

surface, it is parallel to the unit normal n̂:

If the vector field is uniform but is not perpendicular to the surface, as

in Figure 1.6(b), the flux may be determined simply by finding the

component of ~A perpendicular to the surface and then multiplying that

value by the surface area:

U ¼ ~A � n̂ · ðsurface areaÞ: ð1:6Þ
While uniform fields and flat surfaces are helpful in understanding the

concept of flux, many E&M problems involve nonuniform fields and

curved surfaces. To work those kinds of problems, you’ll need to

understand how to extend the concept of the surface integral to vector

fields.

n

n

A

(a) (b)

A

Figure 1.6 Flux of a vector field through a surface.
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