Computability and Logic, Fifth Edition

Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Gödel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's theorem. This fifth edition has been thoroughly revised by John P. Burgess. Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a new and simpler treatment of the representability of recursive functions, a traditional stumbling block for students on the way to the Gödel incompleteness theorems. This new edition is also accompanied by a Web site as well as an instructor's manual.

"[This book] gives an excellent coverage of the fundamental theoretical results about logic involving computability, undecidability, axiomatization, definability, incompleteness, and so on."

- American Math Monthly

"The writing style is excellent: Although many explanations are formal, they are perfectly clear. Modern, elegant proofs help the reader understand the classic theorems and keep the book to a reasonable length."

- Computing Reviews

"A valuable asset to those who want to enhance their knowledge and strengthen their ideas in the areas of artificial intelligence, philosophy, theory of computing, discrete structures, and mathematical logic. It is also useful to teachers for improving their teaching style in these subjects."

- Computer Engineering

Computability and Logic

Fifth Edition

GEORGE S. BOOLOS

JOHN P. BURGESS Princeton University

RICHARD C. JEFFREY

CAMBRIDGE

Cambridge University Press 978-0-521-70146-4 - Computability and Logic, Fifth Edition George S. Boolos, John P. Burgess and Richard C. Jeffrey Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paolo, Delhi

> > Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

> > www.cambridge.org Information on this title: www.cambridge.org/9780521877527

© George S. Boolos, John P. Burgess, Richard C. Jeffrey 1974, 1980, 1990, 2002, 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 1974 Second edition 1980 Third edition 1990 Fourth edition 2002 Fifth edition 2007

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Boolos, George. Computability and logic. – 5th ed. / George S. Boolos, John P. Burgess, Richard C. Jeffrey. p. cm. Includes bibliographical references and index. ISBN 978-0-521-87752-7 (hardback) – ISBN 978-0-521-70146-4 (pbk.) 1. Computable functions. 2. Recursive functions. 3. Logic, Symbolic and Mathematical. I. Burgess, John P., 1948– II. Jeffrey, Richard C. III. Title. QA9.59.B66 2007 511.3'52–dc22 2007014225

> ISBN 978-0-521-87752-7 hardback ISBN 978-0-521-70146-4 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

> For SALLY and AIGLI and EDITH

Contents

Preface to the Fifth Edition

COMPUT	ABILITY	THEORY
--------	---------	--------

1	Enumerability	3
	1.1 Enumerability	3
	1.2 Enumerable Sets	7
2	Diagonalization	16
3	Turing Computability	23
4	Uncomputability	35
	4.1 The Halting Problem	35
	4.2 The Productivity Function	40
5	Abacus Computability	45
	5.1 Abacus Machines	45
	5.2 Simulating Abacus Machines by Turing Machines	51
	5.3 The Scope of Abacus Computability	57
6	Recursive Functions	63
	6.1 Primitive Recursive Functions	63
	6.2 Minimization	70
7	Recursive Sets and Relations	73
	7.1 Recursive Relations	73
	7.2 Semirecursive Relations	80
	7.3 Further Examples	83
8	Equivalent Definitions of Computability	88
	8.1 Coding Turing Computations	88
	8.2 Universal Turing Machines	94
	8.3 Recursively Enumerable Sets	96

CAMBRIDGE

Cambridge University Press 978-0-521-70146-4 - Computability and Logic, Fifth Edition George S. Boolos, John P. Burgess and Richard C. Jeffrey Frontmatter More information

vii	CONTENTS	
	BASIC METALOGIC	
9	A Précis of First-Order Logic: Syntax9.1 First-Order Logic9.2 Syntax	101 101 106
10	A Précis of First-Order Logic: Semantics 10.1 Semantics 10.2 Metalogical Notions	114 114 119
11	The Undecidability of First-Order Logic 11.1 Logic and Turing Machines 11.2 Logic and Primitive Recursive Functions	126 126 132
12	Models 12.1 The Size and Number of Models 12.2 Equivalence Relations 12.3 The Löwenheim–Skolem and Compactness Theorems	137 137 142 146
13	The Existence of Models 13.1 Outline of the Proof 13.2 The First Stage of the Proof 13.3 The Second Stage of the Proof 13.4 The Third Stage of the Proof 13.5 Nonenumerable Languages	153 153 156 157 160 162
14	Proofs and Completeness14.1 Sequent Calculus14.2 Soundness and Completeness14.3 Other Proof Procedures and Hilbert's Thesis	166 166 174 179
15	Arithmetization 15.1 Arithmetization of Syntax 15.2 Gödel Numbers 15.3 More Gödel Numbers	187 187 192 196
16	Representability of Recursive Functions 16.1 Arithmetical Definability 16.2 Minimal Arithmetic and Representability 16.3 Mathematical Induction 16.4 Robinson Arithmetic	199 199 207 212 216
17	Indefinability, Undecidability, Incompleteness 17.1 The Diagonal Lemma and the Limitative Theorems 17.2 Undecidable Sentences 17.3 Undecidable Sentences without the Diagonal Lemma	220 220 224 226
18	The Unprovability of Consistency	232

CAMBRIDGE

Cambridge University Press 978-0-521-70146-4 - Computability and Logic, Fifth Edition George S. Boolos, John P. Burgess and Richard C. Jeffrey Frontmatter More information

CONTENTS

FURTHER TOPICS

ix

19	Normal Forms	243
	19.1 Disjunctive and Prenex Normal Forms	243
	19.2 Skolem Normal Form	247
	19.3 Herbrand's Theorem	253
	19.4 Eliminating Function Symbols and Identity	255
20	The Craig Interpolation Theorem	260
	20.1 Craig's Theorem and Its Proof	260
	20.2 Robinson's Joint Consistency Theorem	264
	20.3 Beth's Definability Theorem	265
21	Monadic and Dyadic Logic	270
	21.1 Solvable and Unsolvable Decision Problems	270
	21.2 Monadic Logic	273
	21.3 Dyadic Logic	275
22	Second-Order Logic	279
23	Arithmetical Definability	286
	23.1 Arithmetical Definability and Truth	286
	23.2 Arithmetical Definability and Forcing	289
24	Decidability of Arithmetic without Multiplication	295
25	Nonstandard Models	302
	25.1 Order in Nonstandard Models	302
	25.2 Operations in Nonstandard Models	306
	25.3 Nonstandard Models of Analysis	312
26	Ramsey's Theorem	319
	26.1 Ramsey's Theorem: Finitary and Infinitary	319
	26.2 König's Lemma	322
27	Modal Logic and Provability	327
	27.1 Modal Logic	327
	27.2 The Logic of Provability	334
	27.3 The Fixed Point and Normal Form Theorems	337
Ann	notated Bibliography	341
Ind	lex	343

Preface to the Fifth Edition

The original authors of this work, the late George Boolos and Richard Jeffrey, stated in the preface to the first edition that the work was intended for students of philosophy, mathematics, or other fields who desired a more advanced knowledge of logic than is supplied by an introductory course or textbook on the subject, and added the following:

The aim has been to present the principal fundamental theoretical results *about* logic, and to cover certain other meta-logical results whose proofs are not easily obtainable elsewhere. We have tried to make the exposition as readable as was compatible with the presentation of complete proofs, to use the most elegant proofs we knew of, to employ standard notation, and to reduce *hair* (as it is technically known).

Such have remained the aims of all subsequent editions.

The "principal fundamental theoretical results *about* logic" are primarily the theorems of Gödel, the completeness theorem, and especially the incompleteness theorems, with their attendant lemmas and corollaries. The "other meta-logical results" included have been of two kinds. On the one hand, filling roughly the first third of the book, there is an extended exposition by Richard Jeffrey of the theory of Turing machines, a topic frequently alluded to in the literature of philosophy, computer science, and cognitive studies but often omitted in textbooks on the level of this one. On the other hand, there is a varied selection of theorems on (in-)definability, (un-)decidability, (in-)completeness, and related topics, to which George Boolos added a few more items with each successive edition, until by the third, the last to which he directly contributed, it came to fill about the last third of the book.

When I undertook a revised edition, my special aim was to increase the pedagogical usefulness of the book by adding a selection of problems at the end of each chapter and by making more chapters independent of one another, so as to increase the range of options available to the instructor or reader as to what to cover and what to defer. Pursuit of the latter aim involved substantial rewriting, especially in the middle third of the book. A number of the new problems and one new section on undecidability were taken from Boolos's *Nachlass*, while the rewriting of the précis of first-order logic – summarizing the material typically covered in a more leisurely way in an introductory text or course and introducing the more abstract modes of reasoning that distinguish intermediate- from introductory-level logic – was undertaken in consultation with Jeffrey. Otherwise, the changes have been my responsibility alone.

The book runs now in outline as follows. The basic course in intermediate logic culminating in the first incompleteness theorem is contained in Chapters 1, 2, 6, 7, 9, 10, 12, 15, 16, and 17, minus any sections of these chapters starred as optional. Necessary background

xii

PREFACE TO THE FIFTH EDITION

on enumerable and nonenumerable sets is supplied in Chapters 1 and 2. All the material on computability (recursion theory) that is strictly needed for the incompletness theorems has now been collected in Chapters 6 and 7, which may, if desired, be postponed until after the needed background material in logic. That material is presented in Chapters 9, 10, and 12 (for readers who have not had an introductory course in logic including a proof of the completeness theorem, Chapters 13 and 14 will also be needed). The machinery needed for the proof of the incompleteness theorems is contained in Chapter 15 on the arithmetization of syntax (though the instructor or reader willing to rely on Church's thesis may omit all but the first section of this chapter) and in Chapter 16 on the representability of recursive functions. The first completeness theorem itself is proved in Chapter 17. (The second incompleteness theorem is discussed in Chapter 18.)

A semester course should allow time to take up several supplementary topics in addition to this core material. The topic given the fullest exposition is the theory of Turing machines and their relation to recursive functions, which is treated in Chapters 3 through 5 and 8 (with an application to logic in Chapter 11). This now includes an account of Turing's theorem on the existence of a universal Turing machine, one of the intellectual landmarks of the last century. If this material is to be included, Chapters 3 through 8 would best be taken in that order, either after Chapter 2 or after Chapter 12 (or 14).

Chapters 19 through 21 deal with topics in general logic, and any or all of them might be taken up as early as immediately after Chapter 12 (or 14). Chapter 19 is presupposed by Chapters 20 and 21, but the latter are independent of each other. Chapters 22 through 26, all independent of one another, deal with topics related to formal arithmetic, and any of them could most naturally be taken up after Chapter 17. Only Chapter 27 presupposes Chapter 18. Users of the previous edition of this work will find essentially all the material in it still here, though not always in the same place, apart from some material in the former version of Chapter 27 that has, since the last edition of this book, gone into *The Logic of Provability*.

All these changes were made in the fourth edition. In the present fifth edition, the main change to the body of the text (apart from correction of errata) is a further revision and simplification of the treatment of the representability of recursive functions, traditionally one of the greatest difficulties for students. The version now to be found in section 16.2 represents the distillation of more than twenty years' teaching experience trying to find ever easier ways over this hump. Section 16.4 on Robinson arithmetic has also been rewritten. In response to a suggestion from Warren Goldfarb, an explicit discussion of the distinction between two different kinds of appeal to Church's thesis, avoidable and unavoidable, has been inserted at the end of section 7.2. The avoidable appeals are those that consist of omitting the verification that certain obviously effectively computable functions are recursive; the unavoidable appeals are those involved whenever a theorem about recursiveness is converted into a conclusion about effective computability in the intuitive sense.

On the one hand, it should go without saying that in a textbook on a classical subject, only a small number of the results presented will be original to the authors. On the other hand, a textbook is perhaps not the best place to go into the minutiæ of the history of a field. Apart from a section of remarks at the end of Chapter 18, we have indicated the history of the field for the student or reader mainly by the names attached to various theorems. See also the annotated bibliography at the end of the book.

PREFACE TO THE FIFTH EDITION

xiii

There remains the pleasant task of expressing gratitude to those (beyond the dedicatees) to whom the authors have owed personal debts. By the third edition of this work the original authors already cited Paul Benacerraf, Burton Dreben, Hartry Field, Clark Glymour, Warren Goldfarb, Simon Kochen, Paul Kripke, David Lewis, Paul Mellema, Hilary Putnam, W. V. Quine, T. M. Scanlon, James Thomson, and Peter Tovey, with special thanks to Michael J. Pendlebury for drawing the "mop-up" diagram in what is now section 5.2.

In connection with the fourth edition, my thanks were due collectively to the students who served as a trial audience for intermediate drafts, and especially to my very able assistants in instruction, Mike Fara, Nick Smith, and Caspar Hare, with special thanks to the last-named for the "scoring function" example in section 4.2. In connection with the present fifth edition, Curtis Brown, Mark Budolfson, John Corcoran, Sinan Dogramaci, Hannes Eder, Warren Goldfarb, Hannes Hutzelmeyer, David Keyt, Brad Monton, Jacob Rosen, Jada Strabbing, Dustin Tucker, Joel Velasco, Evan Williams, and Richard Zach are to be thanked for errata to the fourth edition, as well as for other helpful suggestions.

Perhaps the most important change connected with this fifth edition is one not visible in the book itself: It now comes supported by an instructor's manual. The manual contains (besides any errata that may come to light) suggested hints to students for odd-numbered problems and solutions to all problems. Resources are available to students and instructors at www.cambridge.org/us/9780521877527.

January 2007

JOHN P. BURGESS