
Computability Theory

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

1

Enumerability

Our ultimate goal will be to present some celebrated theorems about inherent limits on
what can be computed and on what can be proved. Before such results can be established,
we need to undertake an analysis of computability and an analysis of provability. Com-
putations involve positive integers 1, 2, 3, . . . in the first instance, while proofs consist of
sequences of symbols from the usual alphabet A, B, C, . . . or some other. It will turn out
to be important for the analysis both of computability and of provability to understand
the relationship between positive integers and sequences of symbols, and background
on that relationship is provided in the present chapter. The main topic is a distinction
between two different kinds of infinite sets, the enumerable and the nonenumerable. This
material is just a part of a larger theory of the infinite developed in works on set theory:
the part most relevant to computation and proof. In section 1.1 we introduce the concept
of enumerability. In section 1.2 we illustrate it by examples of enumerable sets. In the
next chapter we give examples of nonenumerable sets.

1.1 Enumerability

An enumerable, or countable, set is one whose members can be enumerated: arranged
in a single list with a first entry, a second entry, and so on, so that every member of
the set appears sooner or later on the list. Examples: the set P of positive integers is
enumerated by the list

1, 2, 3, 4, . . .

and the set N of natural numbers is enumerated by the list

0, 1, 2, 3, . . .

while the set P− of negative integers is enumerated by the list

−1, −2, −3, −4,

Note that the entries in these lists are not numbers but numerals, or names of
numbers. In general, in listing the members of a set you manipulate names, not the
things named. For instance, in enumerating the members of the United States Senate,
you don’t have the senators form a queue; rather, you arrange their names in a list,
perhaps alphabetically. (An arguable exception occurs in the case where the members

3

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

4 ENUMERABILITY

of the set being enumerated are themselves linguistic expressions. In this case we can
plausibly speak of arranging the members themselves in a list. But we might also speak
of the entries in the list as names of themselves so as to be able to continue to insist
that in enumerating a set, it is names of members of the set that are arranged in a list.)

By courtesy, we regard as enumerable the empty set, ∅, which has no members.
(The empty set; there is only one. The terminology is a bit misleading: It suggests
comparison of empty sets with empty containers. But sets are more aptly compared
with contents, and it should be considered that all empty containers have the same,
null content.)

A list that enumerates a set may be finite or unending. An infinite set that is
enumerable is said to be enumerably infinite or denumerable. Let us get clear about
what things count as infinite lists, and what things do not. The positive integers can be
arranged in a single infinite list as indicated above, but the following is not acceptable
as a list of the positive integers:

1, 3, 5, 7, . . . , 2, 4, 6, . . .

Here, all the odd positive integers are listed, and then all the even ones. This will not
do. In an acceptable list, each item must appear sooner or later as the nth entry, for
some finite n. But in the unacceptable arrangement above, none of the even positive
integers are represented in this way. Rather, they appear (so to speak) as entries
number ∞ + 1, ∞ + 2, and so on.

To make this point perfectly clear we might define an enumeration of a set not as a
listing, but as an arrangement in which each member of the set is associated with one
of the positive integers 1, 2, 3, Actually, a list is such an arrangement. The thing
named by the first entry in the list is associated with the positive integer 1, the thing
named by the second entry is associated with the positive integer 2, and in general,
the thing named by the nth entry is associated with the positive integer n.

In mathematical parlance, an infinite list determines a function (call it f) that takes
positive integers as arguments and takes members of the set as values. [Should we have
written: ‘call it “ f ”,’ rather than ‘call it f ’? The common practice in mathematical
writing is to use special symbols, including even italicized letters of the ordinary
alphabet when being used as special symbols, as names for themselves. In case the
special symbol happens also to be a name for something else, for instance, a function
(as in the present case), we have to rely on context to determine when the symbol is
being used one way and when the other. In practice this presents no difficulties.] The
value of the function f for the argument n is denoted f (n). This value is simply the
thing denoted by the nth entry in the list. Thus the list

2, 4, 6, 8, . . .

which enumerates the set E of even positive integers determines the function f for
which we have

f (1) = 2, f (2) = 4, f (3) = 6, f (4) = 8, f (5) = 10,

And conversely, the function f determines the list, except for notation. (The same list
would look like this, in Roman numerals: II, IV, VI, VIII, X, . . . , for instance.) Thus,

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

1.1. ENUMERABILITY 5

we might have defined the function f first, by saying that for any positive integer n,
the value of f is f (n) = 2n; and then we could have described the list by saying that
for each positive integer n, its nth entry is the decimal representation of the number
f (n), that is, of the number 2n.

Then we may speak of sets as being enumerated by functions, as well as by lists.
Instead of enumerating the odd positive integers by the list 1, 3, 5, 7, . . . , we may
enumerate them by the function that assigns to each positive integer n the value
2n − 1. And instead of enumerating the set P of all positive integers by the list 1, 2,
3, 4, . . . , we may enumerate P by the function that assigns to each positive integer n
the value n itself. This is the identity function. If we call it id, we have id(n) = n for
each positive integer n.

If one function enumerates a nonempty set, so does some other; and so, in fact,
do infinitely many others. Thus the set of positive integers is enumerated not only
by the function id, but also by the function (call it g) determined by the following
list:

2, 1, 4, 3, 6, 5,

This list is obtained from the list 1, 2, 3, 4, 5, 6, . . . by interchanging entries in pairs:
1 with 2, 3 with 4, 5 with 6, and so on. This list is a strange but perfectly acceptable
enumeration of the set P: every positive integer shows up in it, sooner or later. The
corresponding function, g, can be defined as follows:

g(n) =
{

n + 1 if n is odd
n − 1 if n is even.

This definition is not as neat as the definitions f (n) = 2n and id(n) = n of the functions
f and id, but it does the job: It does indeed associate one and only one member of P
with each positive integer n. And the function g so defined does indeed enumerate
P: For each member m of P there is a positive integer n for which we have g(n) = m.

In enumerating a set by listing its members, it is perfectly all right if a member
of the set shows up more than once on the list. The requirement is rather that each
member show up at least once. It does not matter if the list is redundant: All we
require is that it be complete. Indeed, a redundant list can always be thinned out to
get an irredundant list, since one could go through and erase the entries that repeat
earlier entries. It is also perfectly all right if a list has gaps in it, since one could
go through and close up the gaps. The requirement is that every element of the set
being enumerated be associated with some positive integer, not that every positive
integer have an element of the set associated with it. Thus flawless enumerations of
the positive integers are given by the following repetitive list:

1, 1, 2, 2, 3, 3, 4, 4, . . .

and by the following gappy list:

1, −, 2, −, 3, −, 4, −,

The function corresponding to this last list (call it h) assigns values corresponding
to the first, third, fifth, . . . entries, but assigns no values corresponding to the gaps

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

6 ENUMERABILITY

(second, fourth, sixth, . . . entries). Thus we have h(1) = 1, but h(2) is nothing at all,
for the function h is undefined for the argument 2; h(3) = 2, but h(4) is undefined;
h(5) = 3, but h(6) is undefined. And so on: h is a partial function of positive integers;
that is, it is defined only for positive integer arguments, but not for all such arguments.
Explicitly, we might define the partial function h as follows:

h(n) = (n + 1)/2 if n is odd.

Or, to make it clear we haven’t simply forgotten to say what values h assigns to even
positive integers, we might put the definition as follows:

h(n) =
{

(n + 1)/2 if n is odd
undefined otherwise.

Now the partial function h is a strange but perfectly acceptable enumeration of the
set P of positive integers.

It would be perverse to choose h instead of the simple function id as an enumeration
of P; but other sets are most naturally enumerated by partial functions. Thus, the set
E of even integers is conveniently enumerated by the partial function (call it j) that
agrees with id for even arguments, and is undefined for odd arguments:

j(n) =
{

n if n is even
undefined otherwise.

The corresponding gappy list (in decimal notation) is

−, 2, −, 4, −, 6, −, 8,

Of course the function f considered earlier, defined by f (n) = 2n for all positive
integers n, was an equally acceptable enumeration of E , corresponding to the gapless
list 2, 4, 6, 8, and so on.

Any set S of positive integers is enumerated quite simply by a partial function s,
which is defined as follows:

s(n) =
{

n if n is in the set S
undefined otherwise.

It will be seen in the next chapter that although every set of positive integers is
enumerable, there are sets of others sorts that are not enumerable. To say that a set
A is enumerable is to say that there is a function all of whose arguments are positive
integers and all of whose values are members of A, and that each member of A is a
value of this function: For each member a of A there is at least one positive integer
n to which the function assigns a as its value.

Notice that nothing in this definition requires A to be a set of positive integers
or of numbers of any sort. Instead, A might be a set of people; or a set of linguistic
expressions; or a set of sets, as when A is the set {P, E,∅}. Here A is a set with
three members, each of which is itself a set. One member of A is the infinite set
P of all positive integers; another member of A is the infinite set E of all even
positive integers; and the third is the empty set ∅. The set A is certainly enumerable,
for example, by the following finite list:P, E,∅. Each entry in this list names a

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

1.2. ENUMERABLE SETS 7

member of A, and every member of A is named sooner or later on this list. This
list determines a function (call it f), which can be defined by the three statements:
f (1) = P, f (2) = E, f (3) = ∅. To be precise, f is a partial function of positive
integers, being undefined for arguments greater than 3.

In conclusion, let us straighten out our terminology. A function is an assignment
of values to arguments. The set of all those arguments to which the function assigns
values is called the domain of the function. The set of all those values that the function
assigns to its arguments is called the range of the function. In the case of functions
whose arguments are positive integers, we distinguish between total functions and
partial functions. A total function of positive integers is one whose domain is the
whole set P of positive integers. A partial function of positive integers is one whose
domain is something less than the whole set P . From now on, when we speak simply
of a function of positive integers, we should be understood as leaving it open whether
the function is total or partial. (This is a departure from the usual terminology, in
which function of positive integers always means total function.) A set is enumerable
if and only if it is the range of some function of positive integers. We said earlier
we wanted to count the empty set ∅ as enumerable. We therefore have to count as
a partial function the empty function e of positive integers that is undefined for all
arguments. Its domain and its range are both ∅.

It will also be important to consider functions with two, three, or more positive
integers as arguments, notably the addition function sum(m, n) = m + n and the
multiplication function prod(m, n) = m · n. It is often convenient to think of a two-
argument or two-place function on positive integers as a one-argument function on
ordered pairs of positive integers, and similarly for many-argument functions. A few
more notions pertaining to functions are defined in the first few problems at the end
of this chapter. In general, the problems at the end should be read as part of each
chapter, even if not all are going to be worked.

1.2 Enumerable Sets

We next illustrate the definition of the preceding section by some important examples.
The following sets are enumerable.

1.1 Example (The set of integers). The simplest list is 0, 1, −1, 2, −2, 3, −3, Then if
the corresponding function is called f , we have f (1) = 0, f (2) = 1, f (3) = −1, f (4) =
2, f (5) = −2, and so on.

1.2 Example (The set of ordered pairs of positive integers). The enumeration of pairs
will be important enough in our later work that it may be well to indicate two different
ways of accomplishing it. The first way is this. As a preliminary to enumerating them,
we organize them into a rectangular array. We then traverse the array in Cantor’s zig-zag
manner indicated in Figure 1.1. This gives us the list

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1),

If we call the function involved here G, then we have G(1) = (1, 1), G(2) = (1, 2), G(3) =
(2, 1), and so on. The pattern is: First comes the pair the sum of whose entries is 2, then

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

8 ENUMERABILITY

(1, 1) —(1, 2) (1, 3) (1, 4) (1, 5) …

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) …

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) …

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) …

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) …

Figure 1-1. Enumerating pairs of positive integers.

come the pairs the sum of whose entries is 3, then come the pairs the sum of whose entries
is 4, and so on. Within each block of pairs whose entries have the same sum, pairs appear
in order of increasing first entry.

As for the second way, we begin with the thought that while an ordinary hotel may have
to turn away a prospective guest because all rooms are full, a hotel with an enumerable
infinity of rooms would always have room for one more: The new guest could be placed
in room 1, and every other guest asked to move over one room. But actually, a little more
thought shows that with foresight the hotelier can be prepared to accommodate a busload
with an enumerable infinity of new guests each day, without inconveniencing any old guests
by making them change rooms. Those who arrive on the first day are placed in every other
room, those who arrive on the second day are placed in every other room among those
remaining vacant, and so on. To apply this thought to enumerating pairs, let us use up every
other place in listing the pairs (1, n), every other place then remaining in listing the pairs
(2, n), every other place then remaining in listing the pairs (3, n), and so on. The result will
look like this:

(1, 1), (2, 1), (1, 2), (3, 1), (1, 3), (2, 2), (1, 4), (4, 1), (1, 5), (2, 3),

If we call the function involved here g, then g(1) = (1, 1), g(2) = (2, 1), g(3) = (1, 2), and
so on.

Given a function f enumerating the pairs of positive integers, such as G or g
above, an a such that f (a) = (m, n) may be called a code number for the pair (m, n).
Applying the function f may be called decoding, while going the opposite way, from
the pair to a code for it, may be called encoding. It is actually possible to derive
mathematical formulas for the encoding functions J and j that go with the decoding
functions G and g above. (Possible, but not necessary: What we have said so far more
than suffices as a proof that the set of pairs is enumerable.)

Let us take first J . We want J (m, n) to be the number p such that G(p) = (m, n),
which is to say the place p where the pair (m, n) comes in the enumeration corre-
sponding to G. Before we arrive at the pair (m, n), we will have to pass the pair whose
entries sum to 2, the two pairs whose entries sum to 3, the three pairs whose entries
sum to 4, and so on, up through the m + n − 2 pairs whose entries sum to m + n − 1.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

1.2. ENUMERABLE SETS 9

The pair (m, n) will appear in the mth place after all of these pairs. So the position
of the pair (m, n) will be given by

[1 + 2 + · · · + (m + n − 2)] + m.

At this point we recall the formula for the sum of the first k positive integers:

1 + 2 + · · · + k = k(k + 1)/2.

(Never mind, for the moment, where this formula comes from. Its derivation will be
recalled in a later chapter.) So the position of the pair (m, n) will be given by

(m + n − 2)(m + n − 1)/2 + m.

This simplifies to

J (m, n) = (m2 + 2mn + n2 − m − 3n + 2)/2.

For instance, the pair (3, 2) should come in the place

(32 + 2 · 3 · 2 + 22 − 3 − 3 · 2 + 2)/2 = (9 + 12 + 4 − 3 − 6 + 2)/2 = 18/2 = 9

as indeed it can be seen (looking back at the enumeration as displayed above) that it
does: G(9) = (3, 2).

Turning now to j , we find matters a bit simpler. The pairs with first entry 1 will
appear in the places whose numbers are odd, with (1, n) in place 2n − 1. The pairs
with first entry 2 will appear in the places whose numbers are twice an odd number,
with (2, n) in place 2(2n − 1). The pairs with first entry 3 will appear in the places
whose numbers are four times an odd number, with (3, n) in place 4(2n − 1). In
general, in terms of the powers of two (20 = 1, 21 = 2, 22 = 4, and so on), (m, n)
will appear in place j(m, n) = 2m−1(2n − 1). Thus (3, 2) should come in the place
23−1(2 · 2 − 1) = 22(4 − 1) = 4 · 3 = 12, as indeed it does: g(12) = (3, 2).

The series of examples to follow shows how more and more complicated objects
can be coded by positive integers. Readers may wish to try to find proofs of their own
before reading ours; and for this reason we give the statements of all the examples
first, and collect all the proofs afterwards. As we saw already with Example 1.2,
several equally good codings may be possible.

1.3 Example. The set of positive rational numbers

1.4 Example. The set of rational numbers

1.5 Example. The set of ordered triples of positive integers

1.6 Example. The set of ordered k-tuples of positive integers, for any fixed k

1.7 Example. The set of finite sequences of positive integers less than 10

1.8 Example. The set of finite sequences of positive integers less than b, for any fixed b

1.9 Example. The set of finite sequences of positive integers

1.10 Example. The set of finite sets of positive integers

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

10 ENUMERABILITY

1.11 Example. Any subset of an enumerable set

1.12 Example. The union of any two enumerable sets

1.13 Example. The set of finite strings from a finite or enumerable alphabet of symbols

Proofs
Example 1.3. A positive rational number is a number that can be expressed as a

ratio of positive integers, that is, in the form m/n where m and n are positive integers.
Therefore we can get an enumeration of all positive rational numbers by starting with
our enumeration of all pairs of positive integers and replacing the pair (m, n) by the
rational number m/n. This gives us the list

1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 2/4, 3/3, 4/2, 5/1, 1/6, . . .

or, simplified,

1, 1/2, 2, 1/3, 1, 3, 1/4, 2/3, 3/2, 4, 1/5, 1/2, 1, 2, 5/1, 1/6,

Every positive rational number in fact appears infinitely often, since for instance
1/1 = 2/2 = 3/3 = · · · and 1/2 = 2/4 = · · · and 2/1 = 4/2 = · · · and similarly for
every other rational number. But that is all right: our definition of enumerability
permits repetitions.

Example 1.4. We combine the ideas of Examples 1.1 and 1.3. You know from
Example 1.3 how to arrange the positive rationals in a single infinite list. Write a zero
in front of this list, and then write the positive rationals, backwards and with minus
signs in front of them, in front of that. You now have

. . . ,−1/3, −2, −1/2, −1, 0, 1, 1/2, 2, 1/3, . . .

Finally, use the method of Example 1.1 to turn this into a proper list:

0, 1, −1, 1/2, −1/2, 2, −2, 1/3, −1/3, . . .

Example 1.5. In Example 1.2 we have given two ways of listing all pairs of positive
integers. For definiteness, let us work here with the first of these:

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1),

Now go through this list, and in each pair replace the second entry or component n
with the pair that appears in the nth place on this very list. In other words, replace
each 1 that appears in the second place of a pair by (1, 1), each 2 by (1, 2), and so on.
This gives the list

(1, (1, 1)), (1, (1, 2)), (2, (1, 1)), (1, (2, 1)), (2, (1, 2)), (3, (1, 1)), . . .

and that gives a list of triples

(1, 1, 1), (1, 1, 2), (2, 1, 1), (1, 2, 1), (2, 1, 2), (3, 1, 1),

In terms of functions, this enumeration may be described as follows. The original
enumeration of pairs corresponds to a function associating to each positive integer n

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

1.2. ENUMERABLE SETS 11

a pair G(n) = (K (n), L(n)) of positive integers. The enumeration of triples we have
just defined corresponds to assigning to each positive integer n instead the triple

(K (n), K (L(n)), L(L(n))).

We do not miss any triples (p, q, r) in this way, because there will always be an
m = J (q, r) such that (K (m), L(m)) = (q, r), and then there will be an n = J (p, m)
such that (K (n), L(n)) = (p, m), and the triple associated with this n will be precisely
(p, q, r).

Example 1.6. The method by which we have just obtained an enumeration of
triples from an enumeration of pairs will give us an enumeration of quadruples from
an enumeration of triples. Go back to the original enumeration pairs, and replace
each second entry n by the triple that appears in the nth place in the enumeration of
triples, to get a quadruple. The first few quadruples on the list will be

(1, 1, 1, 1), (1, 1, 1, 2), (2, 1, 1, 1), (1, 2, 1, 1), (2, 1, 1, 2),

Obviously we can go on from here to quintuples, sextuples, or k-tuples for any fixed
k.

Example 1.7. A finite sequence whose entries are all positive integers less than 10,
such as (1, 2, 3), can be read as an ordinary decimal or base-10 numeral 123. The
number this numeral denotes, one hundred twenty-three, could then be taken as a
code number for the given sequence. Actually, for later purposes it proves convenient
to modify this procedure slightly and write the sequence in reverse before reading it
as a numeral. Thus (1, 2, 3) would be coded by 321, and 123 would code (3, 2, 1). In
general, a sequence

s = (a0, a1, a2, . . . , ak)

would be coded by

a0 + 10a1 + 100a2 + · · · + 10kak

which is the number that the decimal numeral ak · · · a2a1a0 represents. Also, it will
be convenient henceforth to call the initial entry of a finite sequence the 0th entry, the
next entry the 1st, and so on. To decode and obtain the i th entry of the sequence coded
by n, we take the quotient on dividing by 10i , and then the remainder on dividing by
10. For instance, to find the 5th entry of the sequence coded by 123 456 789, we divide
by 105 to obtain the quotient 1234, and then divide by 10 to obtain the remainder 4.

Example 1.8. We use a decimal, or base-10, system ultimately because human
beings typically have 10 fingers, and counting began with counting on fingers. A
similar base-b system is possible for any b > 1. For a binary, or base-2, system only
the ciphers 0 and 1 would be used, with ak . . . a2a1a0 representing

a0 + 2a1 + 4a2 + · · · + 2kak .

So, for instance, 1001 would represent 1 + 23 = 1 + 8 = 9. For a duodecimal, or
base-12, system, two additional ciphers, perhaps * and # as on a telephone, would be
needed for ten and eleven. Then, for instance, 1*# would represent 11 + 12 · 10 +
144 · 1 = 275. If we applied the idea of the previous problem using base 12 instead

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-70146-4 - Computability and Logic, Fifth Edition
George S. Boolos, John P. Burgess and Richard C. Jeffrey
Excerpt
More information

http://www.cambridge.org/0521701465
http://www.cambridge.org
http://www.cambridge.org

