Physics, Pharmacology and Physiology for Anaesthetists

Key concepts for the FRCA
Physics, Pharmacology and Physiology for Anaesthetists

Key concepts for the FRCA

Matthew E. Cross MB ChB MRCP FRCA
Specialist Registrar in Anaesthetics, Queen Alexandra Hospital, Portsmouth, UK

Emma V. E. Plunkett MBBS MA MRCP FRCA
Specialist Registrar in Anaesthetics, St Mary's Hospital, London, UK

Foreword by

Tom E. Peck MBBS BSc FRCA
Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, UK
To Anna and Harvey for putting up with it all
and for Dad

MC

For all my family
but especially for Adrian

EP
Contents

Acknowledgements
Preface
Foreword
Tom E. Peck

Introduction

Section 1 · Mathematical principles

- Mathematical relationships
- Exponential relationships and logarithms
- Physical measurement and calibration
- The SI units

Section 2 · Physical principles

- Simple mechanics
- The gas laws
- Laminar flow
- Turbulent flow
- Bernoulli, Venturi and Coanda
- Heat and temperature
- Humidity
- Latent heat
- Isotherms
- Solubility and diffusion
- Osmosis and colligative properties
- Resistors and resistance
- Capacitors and capacitance
- Inductors and inductance
- Defibrillators
- Resonance and damping
- Pulse oximetry
- Capnography
- Absorption of carbon dioxide
- Cardiac output measurement
- The Doppler effect
- Neuromuscular blockade monitoring
Contents

Surgical diathermy 74
Cleaning, disinfection and sterilization 76

Section 3 · Pharmacological principles 78
The Meyer–Overton hypothesis 78
The concentration and second gas effects 80
Isomerism 82
Enzyme kinetics 85
Drug interactions 88
Adverse drug reactions 89

Section 4 · Pharmacodynamics 91
Drug–receptor interaction 91
Affinity, efficacy and potency 93
Agonism and antagonism 97
Hysteresis 103

Section 5 · Pharmacokinetics 104
Bioavailability 104
Volume of distribution 105
Clearance 107
Compartmental models 109
Context-sensitive half time 113

Section 6 · Respiratory physiology 115
Lung volumes 115
Spirometry 117
Flow–volume loops 119
The alveolar gas equation 123
The shunt equation 124
Pulmonary vascular resistance 126
Ventilation/perfusion mismatch 127
Dead space 128
Fowler's method 129
The Bohr equation 130
Oxygen delivery and transport 132
The oxyhaemoglobin dissociation curve 134
Carriage of carbon dioxide 136
Work of breathing 138
Control and effects of ventilation 139
Compliance and resistance 142
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 7 · Cardiovascular physiology</td>
<td></td>
</tr>
<tr>
<td>Cardiac action potentials</td>
<td>144</td>
</tr>
<tr>
<td>The cardiac cycle</td>
<td>146</td>
</tr>
<tr>
<td>Pressure and flow calculations</td>
<td>149</td>
</tr>
<tr>
<td>Central venous pressure</td>
<td>151</td>
</tr>
<tr>
<td>Pulmonary arterial wedge pressure</td>
<td>153</td>
</tr>
<tr>
<td>The Frank–Starling relationship</td>
<td>155</td>
</tr>
<tr>
<td>Venous return and capillary dynamics</td>
<td>157</td>
</tr>
<tr>
<td>Ventricular pressure–volume relationship</td>
<td>162</td>
</tr>
<tr>
<td>Systemic and pulmonary vascular resistance</td>
<td>167</td>
</tr>
<tr>
<td>The Valsalva manoeuvre</td>
<td>169</td>
</tr>
<tr>
<td>Control of heart rate</td>
<td>171</td>
</tr>
<tr>
<td>Section 8 · Renal physiology</td>
<td></td>
</tr>
<tr>
<td>Acid–base balance</td>
<td>173</td>
</tr>
<tr>
<td>Glomerular filtration rate</td>
<td>176</td>
</tr>
<tr>
<td>Autoregulation and renal vascular resistance</td>
<td>177</td>
</tr>
<tr>
<td>The loop of Henle</td>
<td>179</td>
</tr>
<tr>
<td>Glucose handling</td>
<td>181</td>
</tr>
<tr>
<td>Sodium handling</td>
<td>182</td>
</tr>
<tr>
<td>Potassium handling</td>
<td>183</td>
</tr>
<tr>
<td>Section 9 · Neurophysiology</td>
<td></td>
</tr>
<tr>
<td>Action potentials</td>
<td>184</td>
</tr>
<tr>
<td>Muscle structure and function</td>
<td>188</td>
</tr>
<tr>
<td>Muscle reflexes</td>
<td>191</td>
</tr>
<tr>
<td>The Monro–Kelly doctrine</td>
<td>193</td>
</tr>
<tr>
<td>Intracranial pressure relationships</td>
<td>194</td>
</tr>
<tr>
<td>Formation and circulation of cerebrospinal fluid</td>
<td>197</td>
</tr>
<tr>
<td>Pain</td>
<td>198</td>
</tr>
<tr>
<td>Section 10 · Statistical principles</td>
<td></td>
</tr>
<tr>
<td>Data types</td>
<td>200</td>
</tr>
<tr>
<td>Indices of central tendency and variability</td>
<td>202</td>
</tr>
<tr>
<td>Types of distribution</td>
<td>206</td>
</tr>
<tr>
<td>Methods of data analysis</td>
<td>208</td>
</tr>
<tr>
<td>Error and outcome prediction</td>
<td>217</td>
</tr>
<tr>
<td>Clinical trials</td>
<td>219</td>
</tr>
<tr>
<td>Evidence-based medicine</td>
<td>220</td>
</tr>
<tr>
<td>Appendix</td>
<td>222</td>
</tr>
<tr>
<td>Index</td>
<td>236</td>
</tr>
</tbody>
</table>
Acknowledgements

We are grateful to the following individuals for their invaluable help in bringing this book to publication

Dr Tom Peck MBBS BSc FRCA
Anaesthetics Department, Royal Hampshire County Hospital, Winchester, UK

Dr David Smith DM FRCA
Shackleton Department of Anaesthetics, Southampton General Hospital, Southampton, UK

Dr Tom Pierce MRCP FRCA
Shackleton Department of Anaesthetics, Southampton General Hospital, Southampton, UK

Dr Mark du Boulay BSc FRCA
Anaesthetics Department, Royal Hampshire County Hospital, Winchester, UK

Dr Roger Sharpe BSc FRCA
Anaesthetics Department, Northwick Park Hospital, London, UK

In addition we are grateful for permission to reprint the illustrations on pages 183 and 184 from International Thomson Publishing Services Ltd.
Cheriton House, North Way, Andover, UK
The examinations in anaesthesia are much feared and respected. Although fair, they do require a grasp of many subjects which the candidate may not have been familiar with for some time. This is particularly true with regards to the basic science components.

This book does not aim to be an all-inclusive text, rather a companion to other books you will already have in your collection. It aims to allow you to have an additional reference point when revising some of these difficult topics. It will enable you to quickly and easily bring to hand the key illustrations, definitions or derivations that are fundamental to the understanding of a particular subject. In addition to succinct and accurate definitions of key phrases, important equations are derived step by step to aid understanding and there are more than 180 diagrams with explanations throughout the book.

You should certainly find a well-trusted textbook of anaesthesia if you wish to delve deeper into the subject matter, but we hope to be able to give you the knowledge and reasoning to tackle basic science MCQs and, more crucially, to buy you those first few lines of confident response when faced with a tricky basic science viva.

Good luck in the examinations, by the time you read this the end is already in sight!
Many things are currently in a state of flux within the world of medical education and training, and the way in which candidates approach examinations is no exception. Gone are the days when large weighty works are the first port of call from which to start the learning experience. Trainees know that there are more efficient ways to get their heads around the concepts that are required in order to make sense of the facts.

It is said that a picture says a thousand words and this extends to diagrams as well. However, diagrams can be a double-edged sword for trainees unless they are accompanied by the relevant level of detail. Failure to label the axis, or to get the scale so wrong that the curve becomes contradictory is at best confusing.

This book will give back the edge to the examination candidate if they digest its contents. It is crammed full of precise, clear and well-labelled diagrams. In addition, the explanations are well structured and leave the reader with a clear understanding of the main point of the diagram and any additional information where required. It is also crammed full of definitions and derivations that are very accessible.

It has been pitched at those studying for the primary FRCA examination and I have no doubt that they will find it a useful resource. Due to its size, it is never going to have the last word, but it is not trying to achieve that. I am sure that it will also be a useful resource for those preparing for the final FRCA and also for those preparing teaching material for these groups.

Doctors Cross and Plunkett are to be congratulated on preparing such a clear and useful book – I shall be recommending it to others.

Dr Tom E. Peck MBBS BSc FRCA
Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, UK