Mapping species distributions: spatial inference and prediction

Maps of species distributions or habitat suitability are required for many aspects of environmental research, resource management, and conservation planning. These include biodiversity assessment, reserve design, habitat management, and restoration, species and habitat conservation plans and predicting the effects of environmental change on species and ecosystems. The proliferation of methods and uncertainty regarding their effectiveness can be daunting to researchers, resource managers, and conservation planners alike. Franklin summarizes the methods used in species distribution modeling (also called niche modeling) and presents a framework for spatial prediction of species distributions based on the attributes (space, time, scale) of the data and questions being asked. The framework links theoretical ecological models of species distributions to spatial data on species and environment, and statistical models used for spatial prediction. Provides practical guidelines to students, researchers, and practitioners in a broad range of environmental sciences including ecology, geography, conservation biology, and natural resources management.

Janet Franklin has been a Professor of Biology and Adjunct Professor of Geography at San Diego State University, where she was on the faculty from 1988–2009. In 2009 she joined the faculty of Arizona State University as a Professor in the Schools of Geographical Sciences and Life Sciences. She received the Bachelor’s degree on Environmental Biology (1979), the Master of Arts (1983), and the Ph.D. (1988) in Geography, all from the University of California at Santa Barbara. Her research interests include biogeography, landscape ecology, plant ecology, biophysical remote sensing, digital terrain analysis, and geographic information science. She has conducted research on plant community composition, structure, dynamics and spatio-temporal patterns in Mediterranean-climate ecosystems, deserts, tropical dry forests and rain forests.

She was the Editor of The Professional Geographer (1997–2000), Board Member of Landscape Ecology (2000–2005), and Associate Editor of the Journal of Vegetation Science (1999–2006). She is currently a Board Member of Ecology, and Diversity and Distributions. She has published more than 80 refereed book chapters and papers in journals Ecological Applications, Ecological Modelling, Journal of Vegetation Science, Ecology, Diversity and Distributions, Journal of Tropical Ecology and Conservation Biology. She has received research support from NSF, NASA, USGS, Forest Service, California State Parks, National Geographic Society, and others.
The world's biological diversity faces unprecedented threats. The urgent challenge facing the concerned biologist is to understand ecological processes well enough to maintain their functioning in the face of the pressures resulting from human population growth. Those concerned with the conservation of biodiversity and with restoration also need to be acquainted with the political, social, historical, economic, and legal frameworks within which ecological and conservation practice must be developed. The new *Ecology, Biodiversity, and Conservation* series will present balanced, comprehensive, up-to-date, and critical reviews of selected topics within the sciences of ecology and conservation biology, both botanical and zoological, and both "pure" and "applied." It is aimed at advanced final-year undergraduates, graduate students, researchers, and university teachers, as well as ecologists and conservationists in industry, government and the voluntary sectors. The series encompasses a wide range of approaches and scales (spatial, temporal, and taxonomic), including quantitative, theoretical, population, community, ecosystem, landscape, historical, experimental, behavioural, and evolutionary studies. The emphasis is on science related to the real world of plants and animals rather than on purely theoretical abstractions and mathematical models. Books in this series will, wherever possible, consider issues from a broad perspective. Some books will challenge existing paradigms and present new ecological concepts, empirical or theoretical models, and testable hypotheses. Other books will explore new approaches and present syntheses on topics of ecological importance.

The Ecology of Phytoplankton
C. S. Reynolds

Invertebrate Conservation and Agricultural Ecosystems
T. R. New

Risks and Decisions for Conservation and Environmental Management
Mark Burgman

Nonequilibrium Ecology
Klaus Rohde
Mapping species distributions

Spatial inference and prediction

JANET FRANKLIN

School of Geographical Sciences and School of Life Sciences, Arizona State University
Formerly at the Departments of Biology and Geography, San Diego State University

With contributions by

JENNIFER A. MILLER

Department of Geography and the Environment, University of Texas, Austin, Texas, USA
To Serge, Savannah, and Connor
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
</tbody>
</table>

Part I: History and ecological basis of species distribution modeling

1 Species distribution modeling
 1.1 Introduction | 3 |
 1.2 What is in a name? | 5 |
 1.2.1 Niche models | 5 |
 1.2.2 Habitat suitability models | 6 |
 1.3 Heightened interest in species distribution modeling | 7 |
 1.4 What is species distribution modeling and how is this book organized? | 9 |
 1.5 Why model species distributions? | 11 |
 1.5.1 Reserve design and conservation planning | 12 |
 1.5.2 Impact assessment and resource management | 14 |
 1.5.3 Ecological restoration and ecological modeling | 14 |
 1.5.4 Risk and impacts of invasive species including pathogens | 15 |
 1.5.5 Effects of global warming on biodiversity and ecosystems | 17 |

2 Why do we need species distribution models?
 2.1 Introduction | 21 |
 2.2 Mapping species – atlas projects and natural history collections | 22 |
Contents

2.2.1 Grid-based atlases of species distributions 22
2.2.2 Species locations from natural history collections 30
2.3 Direct interpolation of species data 30
2.4 Summary – what do we really want? 32

3 Ecological understanding of species distributions 34
3.1 Introduction 34
3.2 The species niche concept 34
 3.2.1 The species niche in environmental and geographical space 35
 3.2.2 The species niche in evolutionary time 39
 3.2.3 Niche or resource selection function? 40
3.3 Factors controlling species distributions 41
3.4 Environmental gradients and species response functions 41
3.5 Conceptual models of environmental factors controlling species distributions 44
 3.5.1 Heat, moisture, light, nutrients, and the distribution of plants 44
 3.5.2 Hierarchical and nested scales of factors affecting species distributions 46
 3.5.3 Environmental factors affecting species diversity and life form 49
3.6 Summary 51

Part II: The data needed for modeling species distributions

4 Data for species distribution models: the biological data 55
 4.1 Introduction – the species data model 55
 4.2 Spatial prediction of species distributions: what is being predicted? 55
 4.3 Scale concepts related to species data 57
 4.4 Spatial sampling design issues related to species data 59
 4.4.1 Probability sample designs 60
 4.4.2 How many observations? 62
 4.4.3 Species prevalence 63
Contents

4.4.4 Sample resolution 64
4.4.5 Study area extent and sampling environmental gradients 66
4.4.6 Using existing data for modeling 66
4.4.7 Species presence-only data 71
4.5 Temporal sampling issues and species data 73
4.5.1 Species detectability 73
4.5.2 Historical species data 73
4.6 Summary 74
5 Data for species distribution models: the environmental data 76
5.1 Introduction 76
5.2 Spatial data representing primary environmental regimes 77
5.2.1 Climate maps 77
5.2.2 Digital terrain maps 84
5.2.3 Soil factors and geology maps 89
5.3 Other environmental data for SDM 91
5.3.1 Vegetation maps 91
5.3.2 Disturbance and disturbance history 93
5.3.3 Remote sensing 94
5.3.4 Landscape pattern 99
5.3.5 The distributions of other species 100
5.4 Environmental data for aquatic and marine species 101
5.5 Summary 103
Part III: An overview of the modeling methods
6 Statistical models – modern regression (Janet Franklin and Jennifer A. Miller) 113
6.1 Introduction 113
6.2 The linear model 114
6.3 Generalized linear models 115
6.3.1 Transformations of the predictors 117
6.3.2 Model estimation 119
6.3.3 Model selection and predictor collinearity 122
6.3.4 Use of GLMs in species distribution modeling 124
6.3.5 Summary 125
Contents

6.4 Generalized additive models 126
 6.4.1 Use of GAMs in species distribution modeling 127
 6.4.2 Summary 130

6.5 Multivariate adaptive regression splines 130
 6.5.1 Use of MARS in species distribution modeling 134

6.6 Multivariate statistical approaches to SDM 134

6.7 Bayesian approaches to SDM 136

6.8 Spatial autocorrelation and statistical models of species distributions 138
 6.8.1 Consequences of SAC data 139
 6.8.2 Solutions to SAC data 142
 Autoregression 143
 Applications of autoregression methods in SDM 147
 Generalized estimating equations and generalized linear mixed models 148
 Geographically weighted regression 149
 Spatial filtering methods 151
 6.8.3 Summary 152

7 Machine learning methods 154
 7.1 Introduction 154

7.2 Decision tree-based methods 155
 7.2.1 How decision trees work 155
 7.2.2 When are decision trees useful? 161
 7.2.3 A note about multivariate decision trees 165
 7.2.4 Application of decision trees in species distribution modeling 165

7.3 Ensemble methods applied to decision trees – bagging, boosting, and random forests 165

7.4 Artificial neural networks 170

7.5 Genetic algorithms 173

7.6 Maximum entropy 174

7.7 Support vector machines 174

7.8 Ensemble forecasting and consensus methods 176

7.9 Summary 178
8 Classification, similarity and other methods for presence-only data 180
 8.1 Introduction 180
 8.2 Envelope models and similarity measures 181
 8.2.1 Environmental envelope methods 182
 8.2.2 Environmental distance methods 183
 8.3 Species presence versus habitat availability 187
 8.3.1 Resource selection functions using discriminative models 188
 8.3.2 Ecological niche factor analysis 191
 8.3.3 Genetic algorithms for rule production (GARP) 194
 8.3.4 Maximum entropy 196
 8.4 Habitat suitability indices and other expert models 200
 8.5 Summary 203

Part IV: Model evaluation and implementation

9 Model evaluation 209
 9.1 Introduction 209
 9.2 Data for model evaluation 211
 9.3 Measures of prediction errors 213
 9.3.1 Threshold-dependent measures of accuracy 214
 9.3.2 Choosing a threshold for classification 216
 9.3.3 Threshold-independent measures of accuracy 222
 AUC 222
 Correlation 224
 Calibration 224
 9.3.4 Evaluating presence-only models 226
 9.3.5 Spatial distribution of model uncertainty and error 228
 9.4 Summary 233

10 Implementation of species distribution models 235
 10.1 Introduction 235
 10.2 Species attributes 237
 10.3 Species data 246
 10.4 Environmental data and scale 248
Contents

10.5 Modeling methods 253
10.6 Model evaluation 259
10.7 Summary – beyond species distribution modeling 260

References 262
Index 318
Maps of actual or potential species distributions or habitat suitability are required for many aspects of environmental research, resource management, and conservation planning. These applications include biodiversity assessment, biological reserve design, habitat management and restoration, species and habitat conservation plans, population viability analysis, environmental risk assessment, invasive species management, community and ecosystem modeling, and predicting the effects of global environmental change on species and ecosystems. In recent years a burgeoning number of statistical and related methods have been used with mapped biological and environmental data in order to model, or, in some way, spatially interpolate species distributions, and other biospatial variables of interest, over large spatial extents. This practice is known as species distribution modeling (SDM). It has also been referred to as environmental, bioclimatic, or species niche modeling, and habitat suitability modeling, but, in this book, the term SDM will be preferred.

The proliferation of modeling methods applied to SDM, and conflicting results regarding their efficacy and relative merits, is daunting to researchers and resource analysts alike. The lack of integration of modeling and Geographic Information System (GIS) tools can impede the effective implementation of SDM. This book summarizes the key components of, and various approaches to, this problem that have been applied worldwide. This comprehensive summary provides guidance to novice species distribution modelers and also a review of current practices for more advanced practitioners. The book is organized according to a framework for modeling species distributions that has three parts: the ecological, data, and statistical models. The ecological model includes ecological theory used to link environmental predictors to species distributions according to a response function. The data model includes the decisions made regarding how data for modeling are collected and measured. The statistical model includes the choice of modeling methods and decisions required during model fitting and evaluation.
The elements of SDM are: a conceptual model of the abiotic and biotic factors controlling species distributions in space and time; data on species occurrences in geographical space; digital maps of environmental variables representing those factors thought to control species distributions; a quantitative or rule-base model linking species occurrence to the environmental predictors; a geographic information system (GIS) for applying the model rules to the environmental variable maps in order to produce a map of predicted species occurrence; and, data and methods for evaluating the error or uncertainty in the predictions.

This book discusses each of these elements. It then concludes with a framework for mapping species distributions from biological survey data, statistical models and digital maps of the environment. That framework is based on the attributes (space, time, scale) of the data and questions being asked. The framework links ecological theories of species distributions to the spatial data and statistical models used in empirical studies. This provides practical guidelines for model formulation, calibration, evaluation, and application.
Acknowledgments

I thank Alan Crowden for encouraging me to write this book, providing mentorship, and offering excellent guidance and suggestions for improving the book. I am extremely grateful to Alexandra Syphard for reading and commenting on the entire manuscript and for developing several of the figures. I also greatly appreciate the considerable efforts of several others who reviewed all or significant portions of the book at various stages, and offered tremendously useful suggestions and corrections, including Mike Austin, Jane Elith, Jennifer Miller, Helen Regan and Michael Usher. In addition to them, I also thank Simon Ferrier for allowing me to draw on his expertise and graciously responding to my many questions.

The people who have inspired and nurtured my passion for this topic are too numerous to mention without fear of leaving someone out. They include many of the authors whose work I cite as well as many of my former students and mentors. I will single out a few who set me on this path and those who offered wisdom, timely insights, good questions, and stimulating discussions along the way (in alphabetical order): Richard Aspinall, Mike Austin, Mark Burgman, Frank Davis, Tom Edwards, Jane Elith, Simon Ferrier, Robert Fisher, Mike Goodchild, Antoine Guisan, John Leathwick, Brian Lees, Brendan Mackey, Ross Meentemeyer, Joel Michaelsen, Jennifer Miller, Gretchen Moisen, Aaron Moody, Helen Regan, John Rotenberry, Andrew Skidmore, Peter Scull, Alan Strahler, Alexandra Syphard, Kim Van Niel, John Wilson, Brendan Wintle, and Nick Zimmermann.

I invited Jennifer Miller to coauthor Chapter 6, contributing the material on spatial autocorrelation and statistical species distribution models. I appreciate the breadth and depth she has added to this topic and I believe that the readers will benefit from her expertise.

I would like to thank all of the participants of the Riederalp 2008 workshop on species distribution modeling for sharing their ideas and friendship. I also thank the students who participated in my species
distribution modeling seminars at San Diego State University in 2003, 2005 and 2007. A number of students showed great enthusiasm for species distribution modeling and through their own research have taught me new things about it, including Paul McCullough, Dawn Lawson, Matt Guiliams, and Katherine Wejnert.

I thank my Editor at Cambridge University Press, Dominic Lewis, and Editorial Assistants, Alison Evans and Rachel Eley, for their support and assistance.

My long-time friend and colleague, David Steadman, has provided constant, unwavering support and encouragement for this book project, and even feigned interest in the topic, for which I am profoundly grateful. Finally, I sincerely thank my family for their endless patience, love and support, and for being proud of what I do for a living.

The writing of this book was supported, in part, by National Science Foundation grant BCS-0452389. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation (NSF).