Data Analysis Using Regression and Multilevel/Hierarchical Models

Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces and demonstrates a wide variety of models, at the same time instructing the reader in how to fit these models using freely available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen in the authors’ own applied research, with programming code provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout.

Andrew Gelman is Professor of Statistics and Professor of Political Science at Columbia University. He has published more than 150 articles in statistical theory, methods, and computation and in applications areas including decision analysis, survey sampling, political science, public health, and policy. His other books are Bayesian Data Analysis (1995, second edition 2003) and Teaching Statistics: A Bag of Tricks (2002).

Analytical Methods for Social Research

Analytical Methods for Social Research presents texts on empirical and formal methods for the social sciences. Volumes in the series address both the theoretical underpinnings of analytical techniques and their application in social research. Some series volumes are broad in scope, cutting across a number of disciplines. Others focus mainly on methodological applications within specific fields such as political science, sociology, demography, and public health. The series serves a mix of students and researchers in the social sciences and statistics.

Series Editors:

R. Michael Alvarez, California Institute of Technology
Nathaniel L. Beck, New York University
Lawrence L. Wu, New York University

Other Titles in the Series:

Event History Modeling: A Guide for Social Scientists, by Janet M. Box-Steffensmeier and Bradford S. Jones
Ecological Inference: New Methodological Strategies, edited by Gary King, Ori Rosen, and Martin A. Tanner
Spatial Models of Parliamentary Voting, by Keith T. Poole
Essential Mathematics for Political and Social Research, by Jeff Gill
Political Game Theory: An Introduction, by Nolan McCarty and Adam Meirovitz
Data Analysis Using Regression and Multilevel/Hierarchical Models

ANDREW GELMAN
Columbia University

JENNIFER HILL
Columbia University
For Zacky and for Audrey
Contents

List of examples page xvii
Preface xix

1 Why? 1
1.1 What is multilevel regression modeling? 1
1.2 Some examples from our own research 3
1.3 Motivations for multilevel modeling 6
1.4 Distinctive features of this book 8
1.5 Computing 9

2 Concepts and methods from basic probability and statistics 13
2.1 Probability distributions 13
2.2 Statistical inference 16
2.3 Classical confidence intervals 18
2.4 Classical hypothesis testing 20
2.5 Problems with statistical significance 22
2.6 55,000 residents desperately need your help! 23
2.7 Bibliographic note 26
2.8 Exercises 26

Part 1A: Single-level regression 29

3 Linear regression: the basics 31
3.1 One predictor 31
3.2 Multiple predictors 32
3.3 Interactions 34
3.4 Statistical inference 37
3.5 Graphical displays of data and fitted model 42
3.6 Assumptions and diagnostics 45
3.7 Prediction and validation 47
3.8 Bibliographic note 49
3.9 Exercises 49

4 Linear regression: before and after fitting the model 53
4.1 Linear transformations 53
4.2 Centering and standardizing, especially for models with interactions 55
4.3 Correlation and “regression to the mean” 57
4.4 Logarithmic transformations 59
4.5 Other transformations 65
4.6 Building regression models for prediction 68
4.7 Fitting a series of regressions 73
5 Logistic regression

5.1 Logistic regression with a single predictor

5.2 Interpreting the logistic regression coefficients

5.3 Latent-data formulation

5.4 Building a logistic regression model: wells in Bangladesh

5.5 Logistic regression with interactions

5.6 Evaluating, checking, and comparing fitted logistic regressions

5.7 Average predictive comparisons on the probability scale

5.8 Identifiability and separation

5.9 Bibliographic note

5.10 Exercises

6 Generalized linear models

6.1 Introduction

6.2 Poisson regression, exposure, and overdispersion

6.3 Logistic-binomial model

6.4 Probit regression: normally distributed latent data

6.5 Ordered and unordered categorical regression

6.6 Robust regression using the t model

6.7 Building more complex generalized linear models

6.8 Constructive choice models

6.9 Bibliographic note

6.10 Exercises

Part 1B: Working with regression inferences

7 Simulation of probability models and statistical inferences

7.1 Simulation of probability models

7.2 Summarizing linear regressions using simulation: an informal Bayesian approach

7.3 Simulation for nonlinear predictions: congressional elections

7.4 Predictive simulation for generalized linear models

7.5 Bibliographic note

7.6 Exercises

8 Simulation for checking statistical procedures and model fits

8.1 Fake-data simulation

8.2 Example: using fake-data simulation to understand residual plots

8.3 Simulating from the fitted model and comparing to actual data

8.4 Using predictive simulation to check the fit of a time-series model

8.5 Bibliographic note

8.6 Exercises

9 Causal inference using regression on the treatment variable

9.1 Causal inference and predictive comparisons

9.2 The fundamental problem of causal inference

9.3 Randomized experiments

9.4 Treatment interactions and poststratification
CONTENTS

9.5 Observational studies 181
9.6 Understanding causal inference in observational studies 186
9.7 Do not control for post-treatment variables 188
9.8 Intermediate outcomes and causal paths 190
9.9 Bibliographic note 194
9.10 Exercises 194

10 Causal inference using more advanced models 199
10.1 Imbalance and lack of complete overlap 199
10.2 Subclassification: effects and estimates for different subpopulations 204
10.3 Matching: subsetting the data to get overlapping and balanced treatment and control groups 206
10.4 Lack of overlap when the assignment mechanism is known: regression discontinuity 212
10.5 Estimating causal effects indirectly using instrumental variables 215
10.6 Instrumental variables in a regression framework 220
10.7 Identification strategies that make use of variation within or between groups 226
10.8 Bibliographic note 229
10.9 Exercises 231

Part 2A: Multilevel regression 235

11 Multilevel structures 237
11.1 Varying-intercept and varying-slope models 237
11.2 Clustered data: child support enforcement in cities 237
11.3 Repeated measurements, time-series cross sections, and other non-nested structures 241
11.4 Indicator variables and fixed or random effects 244
11.5 Costs and benefits of multilevel modeling 246
11.6 Bibliographic note 247
11.7 Exercises 248

12 Multilevel linear models: the basics 251
12.1 Notation 251
12.2 Partial pooling with no predictors 252
12.3 Partial pooling with predictors 254
12.4 Quickly fitting multilevel models in R 259
12.5 Five ways to write the same model 262
12.6 Group-level predictors 265
12.7 Model building and statistical significance 270
12.8 Predictions for new observations and new groups 272
12.9 How many groups and how many observations per group are needed to fit a multilevel model? 275
12.10 Bibliographic note 276
12.11 Exercises 277

13 Multilevel linear models: varying slopes, non-nested models, and other complexities 279
13.1 Varying intercepts and slopes 279
13.2 Varying slopes without varying intercepts 283
13.3	Modeling multiple varying coefficients using the scaled inverse-Wishart distribution	284
13.4	Understanding correlations between group-level intercepts and slopes	287
13.5	Non-nested models	289
13.6	Selecting, transforming, and combining regression inputs	293
13.7	More complex multilevel models	297
13.8	Bibliographic note	297
13.9	Exercises	298

14	Multilevel logistic regression	301
14.1	State-level opinions from national polls	301
14.2	Red states and blue states: what’s the matter with Connecticut?	310
14.3	Item-response and ideal-point models	314
14.4	Non-nested overdispersed model for death sentence reversals	320
14.5	Bibliographic note	321
14.6	Exercises	322

15	Multilevel generalized linear models	325
15.1	Overdispersed Poisson regression: police stops and ethnicity	325
15.2	Ordered categorical regression: storable votes	331
15.3	Non-nested negative-binomial model of structure in social networks	332
15.4	Bibliographic note	342
15.5	Exercises	342

| Part 2B: Fitting multilevel models | 343 |

16	Multilevel modeling in Bugs and R: the basics	345
16.1	Why you should learn Bugs	345
16.2	Bayesian inference and prior distributions	345
16.3	Fitting and understanding a varying-intercept multilevel model using R and Bugs	348
16.4	Step by step through a Bugs model, as called from R	353
16.5	Adding individual- and group-level predictors	359
16.6	Predictions for new observations and new groups	361
16.7	Fake-data simulation	363
16.8	The principles of modeling in Bugs	366
16.9	Practical issues of implementation	369
16.10	Open-ended modeling in Bugs	370
16.11	Bibliographic note	373
16.12	Exercises	373

17	Fitting multilevel linear and generalized linear models in Bugs and R	375
17.1	Varying-intercept, varying-slope models	375
17.2	Varying intercepts and slopes with group-level predictors	379
17.3	Non-nested models	380
17.4	Multilevel logistic regression	381
17.5	Multilevel Poisson regression	382
17.6	Multilevel ordered categorical regression	383
17.7	Latent-data parameterizations of generalized linear models	384
CONTENTS

17.8 Bibliographic note 385
17.9 Exercises 385

18 Likelihood and Bayesian inference and computation 387
18.1 Least squares and maximum likelihood estimation 387
18.2 Uncertainty estimates using the likelihood surface 390
18.3 Bayesian inference for classical and multilevel regression 392
18.4 Gibbs sampler for multilevel linear models 397
18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler: the case of censored data 402
18.6 Metropolis algorithm for more general Bayesian computation 408
18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409
18.8 Bibliographic note 413
18.9 Exercises 413

19 Debugging and speeding convergence 415
19.1 Debugging and confidence building 415
19.2 General methods for reducing computational requirements 418
19.3 Simple linear transformations 419
19.4 Redundant parameters and intentionally nonidentifiable models 419
19.5 Parameter expansion: multiplicative redundant parameters 424
19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427
19.7 Bibliographic note 434
19.8 Exercises 434

Part 3: From data collection to model understanding to model checking 435

20 Sample size and power calculations 437
20.1 Choices in the design of data collection 437
20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439
20.3 Classical power calculations for continuous outcomes 443
20.4 Multilevel power calculation for cluster sampling 447
20.5 Multilevel power calculation using fake-data simulation 449
20.6 Bibliographic note 454
20.7 Exercises 454

21 Understanding and summarizing the fitted models 457
21.1 Uncertainty and variability 457
21.2 Superpopulation and finite-population variances 459
21.3 Contrasts and comparisons of multilevel coefficients 462
21.4 Average predictive comparisons 466
21.5 R^2 and explained variance 473
21.6 Summarizing the amount of partial pooling 477
21.7 Adding a predictor can increase the residual variance! 480
21.8 Multiple comparisons and statistical significance 481
21.9 Bibliographic note 484
21.10 Exercises 485
CONTENTS

22 Analysis of variance

22.1 Classical analysis of variance 487
22.2 ANOVA and multilevel linear and generalized linear models 490
22.3 Summarizing multilevel models using ANOVA 492
22.4 Doing ANOVA using multilevel models 494
22.5 Adding predictors: analysis of covariance and contrast analysis 496
22.6 Modeling the variance parameters: a split-plot latin square 498
22.7 Bibliographic note 501
22.8 Exercises 501

23 Causal inference using multilevel models

23.1 Multilevel aspects of data collection 503
23.2 Estimating treatment effects in a multilevel observational study 506
23.3 Treatments applied at different levels 507
23.4 Instrumental variables and multilevel modeling 509
23.5 Bibliographic note 512
23.6 Exercises 512

24 Model checking and comparison

24.1 Principles of predictive checking 513
24.2 Example: a behavioral learning experiment 515
24.3 Model comparison and deviance 524
24.4 Bibliographic note 526
24.5 Exercises 527

25 Missing-data imputation

25.1 Missing-data mechanisms 530
25.2 Missing-data methods that discard data 531
25.3 Simple missing-data approaches that retain all the data 532
25.4 Random imputation of a single variable 533
25.5 Imputation of several missing variables 539
25.6 Model-based imputation 540
25.7 Combining inferences from multiple imputations 542
25.8 Bibliographic note 542
25.9 Exercises 543

Appendixes

A Six quick tips to improve your regression modeling 547
A.1 Fit many models 547
A.2 Do a little work to make your computations faster and more reliable 547
A.3 Graphing the relevant and not the irrelevant 548
A.4 Transformations 548
A.5 Consider all coefficients as potentially varying 549
A.6 Estimate causal inferences in a targeted way, not as a byproduct of a large regression 549

B Statistical graphics for research and presentation 551
B.1 Reformulating a graph by focusing on comparisons 552
B.2 Scatterplots 553
B.3 Miscellaneous tips 559
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.4 Bibliographic note</td>
<td>562</td>
</tr>
<tr>
<td>B.5 Exercises</td>
<td>563</td>
</tr>
</tbody>
</table>

C Software

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Getting started with R, Bugs, and a text editor</td>
<td>565</td>
</tr>
<tr>
<td>C.2 Fitting classical and multilevel regressions in R</td>
<td>565</td>
</tr>
<tr>
<td>C.3 Fitting models in Bugs and R</td>
<td>567</td>
</tr>
<tr>
<td>C.4 Fitting multilevel models using R, Stata, SAS, and other software</td>
<td>568</td>
</tr>
<tr>
<td>C.5 Bibliographic note</td>
<td>573</td>
</tr>
</tbody>
</table>

References | 575 |

Author index | 601 |

Subject index | 607 |
List of examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home radon</td>
<td>3, 36, 252, 279, 479</td>
</tr>
<tr>
<td>Forecasting elections</td>
<td>3, 144</td>
</tr>
<tr>
<td>State-level opinions from national polls</td>
<td>4, 301, 493</td>
</tr>
<tr>
<td>Police stops by ethnic group</td>
<td>5, 21, 112, 325</td>
</tr>
<tr>
<td>Public opinion on the death penalty</td>
<td>19</td>
</tr>
<tr>
<td>Testing for election fraud</td>
<td>23</td>
</tr>
<tr>
<td>Sex ratio of births</td>
<td>27, 137</td>
</tr>
<tr>
<td>Mothers’ education and children’s test scores</td>
<td>31, 55</td>
</tr>
<tr>
<td>Height and weight</td>
<td>41, 75</td>
</tr>
<tr>
<td>Beauty and teaching evaluations</td>
<td>51, 277</td>
</tr>
<tr>
<td>Height and earnings</td>
<td>53, 59, 140, 288</td>
</tr>
<tr>
<td>Handedness</td>
<td>66</td>
</tr>
<tr>
<td>Yields of mesquite bushes</td>
<td>70</td>
</tr>
<tr>
<td>Political party identification over time</td>
<td>73</td>
</tr>
<tr>
<td>Income and voting</td>
<td>79, 107</td>
</tr>
<tr>
<td>Arsenic in drinking water</td>
<td>86, 128, 193</td>
</tr>
<tr>
<td>Death-sentencing appeals process</td>
<td>116, 320, 540</td>
</tr>
<tr>
<td>Ordered logistic model for storable votes</td>
<td>120, 331</td>
</tr>
<tr>
<td>Cockroaches in apartments</td>
<td>126, 161</td>
</tr>
<tr>
<td>Behavior of couples at risk for HIV</td>
<td>132, 166</td>
</tr>
<tr>
<td>Academy Award voting</td>
<td>133</td>
</tr>
<tr>
<td>Incremental cost-effectiveness ratio</td>
<td>152</td>
</tr>
<tr>
<td>Unemployment time series</td>
<td>163</td>
</tr>
<tr>
<td>The Electric Company TV show</td>
<td>174, 503</td>
</tr>
<tr>
<td>Hypothetical study of parenting quality as an intermediate outcome</td>
<td>188</td>
</tr>
<tr>
<td>Sesame Street TV show</td>
<td>196</td>
</tr>
<tr>
<td>Messy randomized experiment of cow feed</td>
<td>196</td>
</tr>
<tr>
<td>Incumbency and congressional elections</td>
<td>197</td>
</tr>
<tr>
<td>LIST OF EXAMPLES</td>
<td>Page(s)</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Value of a statistical life</td>
<td>197</td>
</tr>
<tr>
<td>Evaluating the Infant Health and Development Program</td>
<td>201, 506</td>
</tr>
<tr>
<td>Ideology of congressmembers</td>
<td>213</td>
</tr>
<tr>
<td>Hypothetical randomized-encouragement study</td>
<td>216</td>
</tr>
<tr>
<td>Child support enforcement</td>
<td>237</td>
</tr>
<tr>
<td>Adolescent smoking</td>
<td>241</td>
</tr>
<tr>
<td>Rodents in apartments</td>
<td>248</td>
</tr>
<tr>
<td>Olympic judging</td>
<td>248</td>
</tr>
<tr>
<td>Time series of children’s CD4 counts</td>
<td>249, 277, 449</td>
</tr>
<tr>
<td>Flight simulator experiment</td>
<td>289, 464, 488</td>
</tr>
<tr>
<td>Latin square agricultural experiment</td>
<td>292, 497</td>
</tr>
<tr>
<td>Income and voting by state</td>
<td>310</td>
</tr>
<tr>
<td>Item-response models</td>
<td>314</td>
</tr>
<tr>
<td>Ideal-point modeling for the Supreme Court</td>
<td>317</td>
</tr>
<tr>
<td>Speed dating</td>
<td>322</td>
</tr>
<tr>
<td>Social networks</td>
<td>332</td>
</tr>
<tr>
<td>Regression with censored data</td>
<td>402</td>
</tr>
<tr>
<td>Educational testing experiments</td>
<td>430</td>
</tr>
<tr>
<td>Zinc for HIV-positive children</td>
<td>439</td>
</tr>
<tr>
<td>Cluster sampling of New York City residents</td>
<td>448</td>
</tr>
<tr>
<td>Value added of school teachers</td>
<td>458</td>
</tr>
<tr>
<td>Advanced Placement scores and college grades</td>
<td>463</td>
</tr>
<tr>
<td>Prison sentences</td>
<td>470</td>
</tr>
<tr>
<td>Magnetic fields and brain functioning</td>
<td>481</td>
</tr>
<tr>
<td>Analysis of variance for web connect times</td>
<td>492</td>
</tr>
<tr>
<td>Split-plot latin square</td>
<td>498</td>
</tr>
<tr>
<td>Educational-subsidy program in Mexican villages</td>
<td>508</td>
</tr>
<tr>
<td>Checking models of behavioral learning in dogs</td>
<td>515</td>
</tr>
<tr>
<td>Missing data in the Social Indicators Survey</td>
<td>529</td>
</tr>
</tbody>
</table>
Preface

Aim of this book

This book originated as lecture notes for a course in regression and multilevel modeling, offered by the statistics department at Columbia University and attended by graduate students and postdoctoral researchers in social sciences (political science, economics, psychology, education, business, social work, and public health) and statistics. The prerequisite is statistics up to and including an introduction to multiple regression.

Advanced mathematics is not assumed—it is important to understand the linear model in regression, but it is not necessary to follow the matrix algebra in the derivation of least squares computations. It is useful to be familiar with exponents and logarithms, especially when working with generalized linear models.

After completing Part 1 of this book, you should be able to fit classical linear and generalized linear regression models—and do more with these models than simply look at their coefficients and their statistical significance. Applied goals include causal inference, prediction, comparison, and data description. After completing Part 2, you should be able to fit regression models for multilevel data. Part 3 takes you from data collection, through model understanding (looking at a table of estimated coefficients is usually not enough), to model checking and missing data. The appendixes include some reference materials on key tips, statistical graphics, and software for model fitting.

What you should be able to do after reading this book and working through the examples

This text is structured through models and examples, with the intention that after each chapter you should have certain skills in fitting, understanding, and displaying models:

- **Part IA**: Fit, understand, and graph classical regressions and generalized linear models.
 - *Chapter 3*: Fit linear regressions and be able to interpret and display estimated coefficients.
 - *Chapter 4*: Build linear regression models by transforming and combining variables.
 - *Chapter 5*: Fit, understand, and display logistic regression models for binary data.
 - *Chapter 6*: Fit, understand, and display generalized linear models, including Poisson regression with overdispersion and ordered logit and probit models.

- **Part IB**: Use regression to learn about quantities of substantive interest (not just regression coefficients).
 - *Chapter 7*: Simulate probability models and uncertainty about inferences and predictions.
Chapter 8: Check model fits using fake-data simulation and predictive simulation.

Chapter 9: Understand assumptions underlying causal inference. Set up regressions for causal inference and understand the challenges that arise.

Chapter 10: Understand the assumptions underlying propensity score matching, instrumental variables, and other techniques to perform causal inference when simple regression is not enough. Be able to use these when appropriate.

Part 2A: Understand and graph multilevel models.

Chapter 11: Understand multilevel data structures and models as generalizations of classical regression.

Chapter 12: Understand and graph simple varying-intercept regressions and interpret as partial-pooling estimates.

Chapter 13: Understand and graph multilevel linear models with varying intercepts and slopes, non-nested structures, and other complications.

Chapter 14: Understand and graph multilevel logistic models.

Chapter 15: Understand and graph multilevel overdispersed Poisson, ordered logit and probit, and other generalized linear models.

Part 2B: Fit multilevel models using the software packages R and Bugs.

Chapter 16: Fit varying-intercept regressions and understand the basics of Bugs. Check your programming using fake-data simulation.

Chapter 17: Use Bugs to fit various models from Part 2A.

Chapter 18: Understand Bayesian inference as a generalization of least squares and maximum likelihood. Use the Gibbs sampler to fit multilevel models.

Chapter 19: Use redundant parameterizations to speed the convergence of the Gibbs sampler.

Part 3:

Chapter 20: Perform sample size and power calculations for classical and hierarchical models: standard-error formulas for basic calculations and fake-data simulation for harder problems.

Chapter 21: Calculate and understand contrasts, explained variance, partial pooling coefficients, and other summaries of fitted multilevel models.

Chapter 22: Use the ideas of analysis of variance to summarize fitted multilevel models; use multilevel models to perform analysis of variance.

Chapter 23: Use multilevel models in causal inference.

Chapter 24: Check the fit of models using predictive simulation.

Chapter 25: Use regression to impute missing data in multivariate datasets.

In summary, you should be able to fit, graph, and understand classical and multilevel linear and generalized linear models and to use these model fits to make predictions and inferences about quantities of interest, including causal treatment effects.
PREFACE

Data for the examples and homework assignments and other resources for teaching and learning
The website www.stat.columbia.edu/~gelman/arm/ contains datasets used in the examples and homework problems of the book, as well as sample computer code. The website also includes some tips for teaching regression and multilevel modeling through class participation rather than lecturing. We plan to update these tips based on feedback from instructors and students; please send your comments and suggestions to gelman@stat.columbia.edu.

Outline of a course
When teaching a course based on this book, we recommend starting with a self-contained review of linear regression, logistic regression, and generalized linear models, focusing not on the mathematics but on understanding these methods and implementing them in a reasonable way. This is also a convenient way to introduce the statistical language R, which we use throughout for modeling, computation, and graphics. One thing that will probably be new to the reader is the use of random simulations to summarize inferences and predictions.

We then introduce multilevel models in the simplest case of nested linear models, fitting in the Bayesian modeling language Bugs and examining the results in R. Key concepts covered at this point are partial pooling, variance components, prior distributions, identifiability, and the interpretation of regression coefficients at different levels of the hierarchy. We follow with non-nested models, multilevel logistic regression, and other multilevel generalized linear models.

Next we detail the steps of fitting models in Bugs and give practical tips for reparameterizing a model to make it converge faster and additional tips on debugging. We also present a brief review of Bayesian inference and computation. Once the student is able to fit multilevel models, we move in the final weeks of the class to the final part of the book, which covers more advanced issues in data collection, model understanding, and model checking.

As we show throughout, multilevel modeling fits into a view of statistics that unifies substantive modeling with accurate data fitting, and graphical methods are crucial both for seeing unanticipated features in the data and for understanding the implications of fitted models.

Acknowledgments
We thank the many students and colleagues who have helped us understand and implement these ideas. Most important have been Jouni Kerman, David Park, and Joe Bafumi for years of suggestions throughout this project, and for many insights into how to present this material to students.

In addition, we thank Hal Stern and Gary King for discussions on the structure of this book; Chuanhai Liu, Xiao-Li Meng, Zaiying Huang, John Boscardin, Jouni Kerman, Alan Zaslavsky, David Dunson, Maria Grazia Pittau, Aleks Jakulin, and Yu-Sung Su for discussions about multilevel modeling and statistical computation; Iven Van Mechelen and Hans Berkhof for discussions about model checking; Iain Pardoe for discussions of average predictive effects and other summaries of regression models; Matt Salganik and Wendy McElveen for suggestions on the presentation of sample size calculations; T. E. Raghunathan, Donald Rubin, Rajeev Dehejia, Michael Sobel, Guido Imbens, Samantha Cook, Ben Hansen, Dylan Small, and Ed Vytlacil for concepts of missing-data modeling and causal inference; Eric...
xxii PREFACE

Loken for help in understanding identifiability in item-response models; Niall Bolger, Agustin Calatroni, John Carlin, Rafael Guerrero-Preston, Oliver Kuss, Reid Landes, Eduardo Leoni, and Dan Rabinowitz for code in Stata, SAS, and SPSS; Hans Skaug for code in AD Model Builder; Uwe Ligges, Sibylle Sturtz, Douglas Bates, Peter Dalgaard, Martyn Plummer, and Ravi Varadhan for help with multi-level modeling and general advice on R; and the students in Statistics / Political Science 4330 at Columbia for their invaluable feedback throughout.

Collaborators on specific examples mentioned in this book include Phillip Price on the home radon study; Tom Little, David Park, Joe Bafumi, and Noah Kaplan on the models of opinion polls and political ideal points; Jane Waldfogel, Jeanne Brooks-Gunn, and Wen Han for the mothers and children’s intelligence data; Lex van Geen and Alex Pfaff on the arsenic in Bangladesh; Gary King on election forecasting; Jeffrey Fagan and Alex Kiss on the study of police stops; Tian Zheng and Matt Salganik on the social network analysis; John Carlin for the data on mesquite bushes and the adolescent-smoking study; Alessandra Casella and Tom Palfrey for the storable-votes study; Rahul Dodhia for the flight simulator example; Boris Shor, Joe Bafumi, and David Park on the voting and income study; Alan Edelman for the internet connections data; Donald Rubin for the Electric Company and educational-testing examples; Jeanne Brooks-Gunn and Jane Waldfogel for the mother and child IQ scores example and Infant Health and Development Program data; Nabila El-Bassel for the risky behavior data; Lenna Nepomnyashchy for the child support example; Howard Wainer with the Advanced Placement study; Iain Pardoe for the prison-sentencing example; James Liebman, Jeffrey Fagan, Valerie West, and Yves Chretien for the death-penalty study; Marcia Meyers, Julien Teitler, Irv Garfinkel, Marilyn Sinkowicz, and Sandra Garcia with the Social Indicators Study; Wendy McKelvey for the cockroach and rodent examples; Stephen Arpadi for the zinc and HIV study; Eric Verhoogen and Jan von der Goltz for the Progresa data; and Iven van Mechelen, Yuri Goegebeur, and Francis Tuerlinckx on the stochastic learning models. These applied projects motivated many of the methodological ideas presented here, for example the display and interpretation of varying-intercept, varying-slope models from the analysis of income and voting (see Section 14.2), the constraints in the model of senators’ ideal points (see Section 14.3), and the difficulties with two-level interactions as revealed by the radon study (see Section 21.7). Much of the work in Section 5.7 and Chapter 21 on summarizing regression models was done in collaboration with Iain Pardoe.

Many errors were found and improvements suggested by Brad Carlin, John Carlin, Samantha Cook, Caroline Rosenthal Gelman, Kosuke Imai, Jonathan Katz, Uwe Ligges, Wendy McKelvey, Jong-Hee Park, Martyn Plummer, Phillip Price, Song Qian, Giuseppe Ruggs, Dylan Small, Elizabeth Stuart, Sibylle Sturtz, Alex Tabarrok, and Shravan Vasishth. Brian MacDonald’s copyediting has saved us from much embarrassment, and we also thank Yu-Sung Su for typesetting help, Sarah Ryu for assistance with indexing, and Ed Parsons and his colleagues at Cambridge University Press for their help in putting this book together. We especially thank Bob O’Hara and Gregor Gorjanc for incredibly detailed and useful comments on the nearly completed manuscript.

We also thank the developers of free software, especially R (for statistical computation and graphics) and Bugs (for Bayesian modeling), and also Emacs and LaTeX (used in the writing of this book). We thank Columbia University for its collaborative environment for research and teaching, and the U.S. National Science Foundation for financial support. Above all, we thank our families for their love and support during the writing of this book.