
CHAPTER ONE

Basic Mathematical Background

The goal of this chapter is twofold: first, to provide the basic mathematical
background needed to read the rest of this book, and second, to give the
reader the basic background and motivation to learn more about the topics
covered in this chapter by use of, for example, the referenced books and
papers. This background is necessary to better prepare the reader to work in
the area of partial differential equations (PDEs) applied to image processing
and computer vision. Topics covered include differential geometry, PDEs,
variational formulations, and numerical analysis. Extensive treatment on
these topics can be found in the following books, which are considered
essential for the shelves of everybody involved in this topic:

1. Guggengheimer’s book on differential geometry [166]. This is one of
the few simple-to-read books that covers affine differential geometry,
Cartan moving frames, and basic Lie group theory. A very enjoyable
book.

2. Spivak’s “encyclopedia” on differential geometry [374]. Reading any
of the comprehensive five volumes is a great pleasure. The first vol-
ume provides the basic mathematical background, and the second
volume contains most of the basic differential geometry needed for
the work described in this book. The very intuitive way Spivak writes
makes this book a great source for learning the topic.

3. DoCarmo’s book on differential geometry [56]. This is a very formal
presentation of the topic, and one of the classics in the area.

4. Blaschke’s book on affine differential geometry [39]. This is the
source of basic affine differential geometry. A few other books have
been published, but this is still very useful, and may be the most useful
of all. Unfortunately, it is in German. A translation of some of the
parts of the book appears in Ref. [53]. Be aware that this translation
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2 Geometric Partial Differential Equations and Image Analysis

contains a large number of errors. I suggest you check with the orig-
inal every time you want to be sure about a certain formula.

5. Cartan’s book on moving frames [61]. What can I say, this is a must.
It is comprehensive coverage of the moving-frames theory, including
the projective case, which is not covered in this book (projective
differential geometry can be found in Ref. [412]). If you want to own
this book, ask any French mathematician and he or she will point
you to a place in Paris where you can buy it (and all the rest of
the classical French literature). And if you want to learn about the
recent developments in this theory, read the recent papers by Fels and
Olver [140, 141].

6. Olver’s books on Lie theory and differential invariants [281, 283].
A comprehensive coverage of the topic by one of the leaders in the
field.

7. Many books have been written on PDEs. Basic concepts can be found
in almost any book on applied mathematics. I strongly recommend
the relatively new book by Evans [125] and the classic book by Protter
and Weinberger for the maximum principle [321].

8. For numerical analysis, an almost infinite number of books have been
published. Of special interest for the topics of this book are the books
by Sod [371] and LeVeque [240]. As mentioned in the Introduction,
Sethian’s book [361] is also an excellent source of the basic numerical
analysis needed to implement many of the equations discussed in this
book. We are all expecting Osher’s book as well, so keep an eye open,
and, until then, check his papers at the website given in Ref. [290].

9. For applied mathematics in general and calculus of variations in par-
ticular, I strongly suggest looking at the classics, the books of Strang
[375] and Courant and Hilbert [104].

1.1. Planar Differential Geometry

To start the mathematical background, basic concepts on planar differential
geometry are presented. A planar curve, which can be considered as the
boundary of a planar object, is given by a map from the real line into the
real plane. More formally, a map C(p) : [a, b] ∈ R → R

2 defines a planar
curve, where p parameterizes the curve. For each value p0 ∈ [a, b], we
obtain a point C(p0) = [x(p0), y(p0)] on the plane.

IfC(a) = C(b), the curve is said to be a closed curve. If there exists at least
one pair of parameters p0 �= p1, p0, p1 ∈ (a, b), such that C(p0) = C(p1),
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Basic Mathematical Background 3

then the curve has a self-intersection. Otherwise, the curve is said to be a
simple curve. Throughout this section, we will assume that the curve is at
least two times differentiable.

Up to now, the parameter p has been arbitrary. Basically, p tells us the
velocity at which the curve travels. This velocity if given by the tangent
vector

∂C
∂p

.

We now search for a very particular parameterization, denoted as Eu-
clidean arc length(s), such that this vector is always a unit vector,

∥∥∥∥∂C
∂p

∥∥∥∥ = 1,

where ‖·‖=〈·, ·〉1/2 is the classical Euclidean length. In terms of the arc
length, the curve is not defined anymore on the interval [a, b] but on some
interval [0, L], where L is the (Euclidean) length of the curve. The arc length
is unique (up to a constant), and is obtained by means of the relation

dC
ds

= dC
dp

dp

ds
,

which leads to

ds

dp
=

[ (
dx

dp

)2

+
(

dy

dp

)2 ]1/2

.

We should note that throughout this book we consider only rectifiable
curves. These are curves with a finite length between every two points. This
is also equivalent to saying that the functions x(p) and y(p) have bounded
variation.

From the definition of arc length, the (Euclidean) length of a curve be-
tween two points C(p0) and C(p1) is then given by

L(p0, p1) =
∫ p1

p0

[ (
dx

dp

)2

+
(

dy

dp

)2 ]1/2

dp =
∫ s(p1)

s(p0)
ds.

Euclidean Curvature

The Euclidean arc length is one of the two basic concepts in planar differ-
ential geometry. The second one is that of curvature, which we proceed to
define now.
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4 Geometric Partial Differential Equations and Image Analysis

The condition for the arc-length parameterization means that the inner
product of the tangent Cs with itself is a constant, equal to one (throughout
this book, subscripts indicate derivatives):

〈Cs, Cs〉 = 1.

Computing derivatives, we obtain

〈Cs, Css〉 = 0.

The first and the second derivatives, according to arc length, are then vectors
perpendicular to each other. Ignoring for a moment the sign, we can define
the Euclidean curvature κ as the absolute value of the normal vector Css :

κ := ‖Css‖. (1.1)

If 	T and 	N stand for the unit Euclidean tangent and the unit Euclidean
normal, respectively ( 	T ⊥ 	N ), then (now κ has the sign back)

dC
ds

= 	T ,

d2C
ds2

= κ 	N ,

and from this we obtain the Frenet equations:

d 	T
ds

= κ 	N ,

d 	N
ds

= −κ 	T .

Many other definitions of curvature, all leading of course to the same
concept, exist, and all of them can be derived from each other. For example,
if θ stands for the angle between 	T and the x axis, then

κ = dθ

ds
.

This is easy to show:

d 	T
ds

= d(cos θ, sin θ )

ds

= dθ

ds
(−sin θ, cos θ ) = dθ

ds
	N ,

and the result follows from the Frenet equations.
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Basic Mathematical Background 5

The curvature κ(s) at a given point C(s) is also the inverse of the radius of
the disk that best fits the curve at C(s). Best fit means that the disk is tangent
to the curve at C(s) (and therefore its center is on the normal direction). This
is called the osculating circle.

A curve is not always given by an explicit representation of the formC(p).
In many cases, as we will see later in this book, a curve is given in implicit
form as the level set of a two-dimensional (2D) function u(x, y) : R

2 → R,
that is,

C ≡ {(x, y) : u(x, y) = 0}.

It is important then to be able to compute the curvature of C given in this
form. It is possible to show that

κ = uxx u2
y − 2ux uyuxy + uyyu2

x(
u2

x + u2
y

)3/2 .

Basically, this result can easily be obtained from the following simple facts:

1. The unit normal 	N is perpendicular to the level sets, and

	N = +(−)
∇u

‖∇u‖ , (1.2)

where the sign depends on the direction selected for 	N . This follows
from the definition of the gradient vector

∇u := ∂u

∂x
	x + ∂u

∂y
	y.

Of course, the tangent 	T to the curve C is also tangent to the level
sets.

2. If 	N = (n1, n2), then κ = dn1/dx + dn2/dy.

Curve Representation by Means of Curvature

A curve is uniquely represented, up to a rotation and a translation, by the
function κ(s), that is, by its curvature as a function of the arc length. This
is a very important property, which means that the curvature is invariant to
Euclidean motions. In other words, two curves obtained from each other by
a rotation and a translation have exactly the same curvature function κ(s).
Moreover, a curve C = (x, y) can be reconstructed from the curvature by
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6 Geometric Partial Differential Equations and Image Analysis

the following equations:

x = x0 + cos α

∫ θ

θ0

cos(θ − θ0)

κ(θ )
dθ,

y = y0 + cos β

∫ θ

θ0

sin(θ − θ0)

κ(θ )
dθ,

where the constants x0, y0, α, β, and θ0 represent the fact that the recon-
struction is unique up to a rotation and a translation.

Some Global Properties and the Evolute

A number of basic global facts related to the Euclidean curvature are now
presented:

1. There are only two curves with constant curvature: straight lines (zero
curvature) and circles (curvature equal to the inverse of the radius).
The only closed curve with constant curvature is then the circle.

2. Vertices are the points at which the first derivative of the curvature
vanishes. Every closed curve has at least four of these points (four-
vertex theorem).

3. The total curvature of a closed curve is a multiple of 2π (exactly 2π

in the case of a simple curve).
4. Isoperimetric inequality: Among all closed single curves of length

(perimeter) L , the circle of radius L/2π defines the one with the
largest area.

As pointed out when defining the osculating circle, the curvature is the
inverse of the radius of the osculating circle. The centers of these circles
are called centers of curvature, and their loci define the Euclidean evolute
of the curve:

EC(s) := C(s) + 1

κ(s)
	N (s). (1.3)

The basic geometric properties of the evolute, such as tangent, normal, arc
length, and curvature, can be directly computed from those of the curve. The
fact that the evolute of a closed curve is not a smooth curve it is of particular
interest, as it is easy to show that the evolute has a cusp for every vertex
of the curve.
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Basic Mathematical Background 7

1.2. Affine Differential Geometry

All the concepts presented in Section 1.1 are just Euclidean invariant, that
is, invariant to rotations and translations. We now extend the concepts to the
affine group. For the projective group see for example [226].

A general affine transformation in the plane (R2) is defined as

X̃ = AX + B, (1.4)

where X ∈ R
2 is a vector, A ∈ GL+

2 (R) (the group of invertible real 2 × 2
matrices with positive determinant) is the affine matrix, and B ∈ R2 is a
translation vector. It is easy to show that transformations of the type of
Eq. (1.4) form a real algebraic group A, called the group of proper affine
motions. We also consider the case in which we restrict A ∈ SL2(R) (i.e.,
the determinant of A is 1), in which case Eq. (1.4) gives us the group of
special affine motions, Asp.

Before proceeding, let us briefly recall the notion of invariant. (For more
detailed and rigorous discussions, see Refs. [51, 111, and 166] and Section
1.7 on Lie groups later in this chapter.) A quantity Q is called an invariant
of a Lie group G if whenever Q transforms into Q̃ by any transformation G,
we obtain Q̃ = �Q, where � is a function of the transformation alone. If
� = 1 for all transformations in G, Q is called an absolute invariant [111].
What we call invariant here is sometimes referred to in the literature as
relative invariant. (We discuss more on Lie groups in Section 1.7.)

In the case of Euclidean motions (A in Eq. (1.4) being a rotation matrix),
we have already seen that the Euclidean curvature κ of a given plane curve,
as defined in Section 1.1, is a differential invariant of the transformation. In
the case of general affine transformations, in order to keep the invariance
property, a new definition of curvature is necessary. In this section, this
affine curvature is presented [51, 53, 166, 374]. See also Refs. [39 and 53]
for general properties of affine differential geometry.

Let C(p) : S1 → R
2 be a simple curve with curve parameter p (where

S1 denotes the unit circle). We assume throughout this section that all of
our mappings are sufficiently smooth, so that all the relevant derivatives
may be defined. A reparameterization of C(p) to a new parameter s can be
performed such that

[Cs, Css] = 1, (1.5)

where [X ,Y] stands for the determinant of the 2 × 2 matrix whose columns
are given by the vectors X , Y ∈ R

2. This is also the area of the parallelo-
gram defined by the vectors. This relation is invariant under special affine
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8 Geometric Partial Differential Equations and Image Analysis

transformations, and the parameter s is called the affine arc length. (As
commonly done in the literature, we use s for both the Euclidean and the
affine arc lengths, and the meaning will be clear from the context.) Setting

g(p) := [Cp, Cpp]1/3, (1.6)

we find that the parameter s is explicitly given by

s(p) =
∫ p

0
g(ξ )dξ. (1.7)

This is easily obtained by means of the relation

1 = [Cs, Css] =
[
Cp

dp

ds
, Cpp

(
dp

ds

)2

+ Cp
d2 p

ds2

]
.

Note that in the above standard definitions, we have assumed (of course)
that g (the affine metric) is different from zero at each point of the curve, i.e.,
the curve has no inflection points. This assumption will be made through-
out this section unless explicitly stated otherwise. In particular, the convex
curves we consider will be strictly convex, i.e., will have strictly positive (Eu-
clidean) curvature. Fortunately, inflection points, that is, points with κ = 0,
are affine invariant. Therefore limiting ourself to convex curves is not a
major limitation for most image processing and computer vision problems.

It is easy to see that the following relations hold:

ds = gdp, (1.8)

	T := Cs = Cp
dp

ds
, (1.9)

	N := Css = Cpp

(
dp

ds

)2

+ Cp
d2 p

ds2
. (1.10)

	T is called the affine tangent vector and 	N is the affine normal vector. These
formulas help to derive the relations between the Euclidean and the affine
arc lengths, tangents, and normals. For example, considering v to be the
Euclidean arc length, we have that

ds = κ1/3dv, (1.11)

where ds is still the affine arc length and dv is the Euclidean arc length:

	T = κ−1/3 	T ,

	N = κ1/3 	N + f (κ, κp) 	T ,

where f is a function of the first and second derivatives of the Euclidean
curvature.
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Basic Mathematical Background 9

Affine Curvature

We now follow the same procedure as in the Euclidean case in order to
obtain the affine curvature. By differentiating Eq. (1.5) we obtain

[Cs, Csss] = 0. (1.12)

Hence the two vectors Cs and Csss are linearly dependent, and so there exists
µ such that

Csss + µCs = 0. (1.13)

Equation (1.13) implies (just compare the corresponding areas and recall
that [Cs, Css] = 1) that

µ = [Css, Csss], (1.14)

and µ is called the affine curvature. The affine curvature is the simplest
nontrivial differential affine invariant of the curve C [53]. Note that µ can
also be computed as

µ = [Cssss, Cs]. (1.15)

For the exact expression of µ as a function of the original parameter p, see
Ref. [53].

As pointed out in Section 1.1, in the Euclidean case constant Euclidean
curvature κ is obtained for only circular arcs and straight lines. Further,
the Euclidean osculating figure of a curve C(p) at a given point is always
the circle with radius 1/κ whose center lies on the normal at the given
point. In the affine case, the conics (parabola, ellipse, and hyperbola) are
the only curves with constant affine curvature µ (µ = 0, µ > 0, and µ < 0,
respectively). Therefore the ellipse is the only closed curve with constant
affine curvature. The affine osculating conic of a curve C at a noninflexion
point is a parabola, ellipse, or hyperbola, depending on whether the affine
curvature µ is zero, positive, or negative, respectively. This conic has a
triple-point contact with the curve C at that point (same point, tangent, and
second derivative, or Euclidean curvature).

Affine Invariants

Assuming the group of special affine motions, we can easily prove the abso-
lute invariance of some of the concepts introduced above when C̃ is obtained
from C by means of an affine transformation, that is, the affine arc length,
tangent, normal, and curvature, as well as the area, are absolute invariants for
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10 Geometric Partial Differential Equations and Image Analysis

the group of special affine motions. In general, for A ∈ GL+
2 (R), we obtain

ds̃ = [A]1/3ds,

C̃s̃ = A[A]−1/3Cs,

C̃s̃ s̃ = A[A]−2/3Css,

µ̃ = [A]−2/3µ,

area(C̃) = [A]area(C).

Thus the affine properties remain invariant (relative) but not absolute invari-
ants. For an extended analysis about curvature like invariants, see Ref. [51].

Global Affine Differential Geometry

As in the Euclidean case, we now give a number of global properties re-
garding affine differential geometry:

1. There are at least six points with µs = 0 (affine vertices) in a closed
convex curve.

2. Define the affine perimeter of a closed curve as

L :=
∮

gdp =
∫

ds.

Then, from all closed convex curves with a constant area, the ellipse,
and only the ellipse, attains the greatest affine perimeter. In other
words, for an oval (strictly convex closed curve) the following relation
holds:

8π2area − L3 ≥ 0,

and equality holds for only the ellipse.
3. For closed convex sets (ovals), the following affine isoperimetric in-

equality holds:

2
∮

µds ≤ L2

area
. (1.16)

See [246,247] for other inequalities and [147] for a related Euclidean
result.

4. In the important case of the ellipse, the relation between the affine
curvature and the area is given by

µ =
(

π

area

)2/3

,

where area = πr1r2 is the area, and r1 and r2 are the ellipse radii.
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