
Introduction to analysis of variance

What is analysis of variance?

Analysis of variance, often abbreviated to ANOVA, is a powerful statistic

and a core technique for testing causality in biological data. Researchers

use ANOVA to explain variation in the magnitude of a response variable

of interest. For example, an investigator might be interested in the sources

of variation in patients’ blood cholesterol level, measured in mg/dL.

Factors that are hypothesised to contribute to variation in the response

may be categorical or continuous. A categorical factor has levels – the

categories – that are each applied to a different group of sampling units.

For example, sampling units of hospital patients may be classified as male

or female, representing two levels of the factor ‘Gender’. By contrast, a

continuous factor has a continuous scale of values and is therefore

a covariate of the response. For example, age of patients may be quantified

by the covariate ‘Age’. ANOVA determines the influence of these effects

on the response by testing whether the response differs among levels of the

factor, or displays a trend across values of the covariate. Thus, blood

cholesterol level of patients may be deemed to differ among male and

female patients, or to increase or decrease with age of the patient.

A factor of interest can be experimental, with sampling units that are

manipulated to impose contrasting treatments. For example, patients

may be given a cholesterol-lowering drug or a placebo, which represent

two levels of the factor ‘Drug’. Alternatively, the factor can be men-

surative, with sampling units that are grouped according to some pre-

existing difference. For example, patients may be classified as vegetarians

or non-vegetarians, which represent two levels of the factor ‘Diet’.

Biologists use ANOVA for two main purposes: prediction and explana-

tion. In predictive studies, ANOVA functions as an exploratory tool to find
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the best fitting set of response predictors. From a full model of all possible

sources of variation in the response, procedures of model simplification allow

the investigator to discard unimportant factors and so develop a model with

maximum predictive power. This application of ANOVA is just one of many

forms of exploratory analyses now available in standard statistics packages.

ANOVA really comes into its own when it is used for hypothesis testing. In

this case, the primary goal is to explain variation in a response by distin-

guishing a hypothesised effect, or combination of effects, from a null

hypothesis ofnoeffect.Any suchtestofhypothesisedeffectsona responsehas

an analytical structure that is fixed by the design of data collection. Although

this book provides some guidance on model simplification, its principal focus

is on the hypothesis-testing applications of ANOVA in studies that have been

designed to explain sources of variation in a response. More exploratory

studies concerned with parameter estimation may be better suited to max-

imum likelihood techniques of generalised linear modelling (GLIM) and

Bayesian inference, which lie beyond the scope of the book.

The great strength of ANOVA lies in its capacity to distinguish effects

on a response from amongst many different sources of variation compared

simultaneously, or in certain cases through time. It can identify interacting

factors, and it can measure the scale of variation within a hierarchy of

effects. This versatility makes it a potentially powerful tool for answering

questions about causality. Of course tools can be dangerous if mishandled,

and ANOVA is no exception. Researchers will not go astray provided they

adhere to the principle of designing parsimonious models for hypothesis

testing. A parsimonious design is one that samples the minimum number

of factors necessary to answer the question of interest, and records suffi-

cient observations to estimate all potential sources of variance amongst

those chosen few factors. As you use this book, you will become aware that

the most appropriate models for answering questions of interest often

include nuisance variables. They need measuring too, even if only to factor

them out from the effects of interest. One of the biggest challenges of

experimental design, and best rewards when you get it right, is to identify

and fairly represent all sources of variation in the data. True to the playful

nature of scientific enquiry, this calls for building a model.

How to read and write statistical models

A statistical model describes the structure of an analysis of variance.

ANOVA is a very versatile technique that can have many different
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structures, and each is described by a different model. Here we introduce

the concept of a statistical model, and some of the terminology used to

describe model components. The meanings of terms will be further

developed in later sections, and all of the most important terms are

defined in a Glossary on page 271.

Analysis of variance estimates the effect of a categorical factor by

testing for a difference between its category means in some continuous

response variable of interest. For example, it might be used to test the

response of crop yield to high and low sowing density. Data on yield will

provide useful evidence of an effect of density if each level of density is

sampled with a representative group of independent measures, and the

variation in yield between samples can be attributed solely to sowing

density. The test can then calibrate the between-sample variation against

the residual and unmeasured within-sample variation. A relatively high

between-sample variation provides evidence of the samples belonging to

different populations, and therefore of the factor explaining or predicting

variation in the response. The analysis has then tested a statistical model:

Y ¼ A þ e

We read this one-factor model as: ‘Variation in the response variable [Y] is

explained by [¼] variation between levels of a factor [A] in addition to [þ]

residual variation [e]’. This is the test hypothesis, H1, which is evaluated

against a mutually exclusive null hypothesis, H0: Y¼ e.
The evidence for an effect of factor A on variation in Y is determined by

testing H0 with a statistic, which is a random variable described by a

probability distribution. Analysis of variance uses the F statistic to com-

pute the probability P of an effect at least as big as that observed arising by

chance from a true null hypothesis. The null hypothesis is rejected and the

factor deemed to have a significant effect if P is less than some pre-

determined threshold a, often set at 0.05. This is known as the Type I error

rate for the test, and a¼ 0.05 means that we sanction 5% of such tests

yielding false positive reports as a result of rejecting a true null hypothesis.

The analysis has a complementary probability b of accepting a false null

hypothesis, known as the Type II error rate. The value of b gives the rate of

false negative reports, and a lower rate signifies a test with more power to

distinguish true effects. We will expand on these important issues in later

sections (e.g., pages 13 and 248); for the purposes of model building, it

suffices to think of the factor A as having a significant effect if P< 0.05.

Analysis of variance can also estimate the effect of a continuous factor.

This is done by testing for a trend in the response across values of the
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covariate factor. The analysis is now referred to as regression. For

example, one might wish to test the response of crop yield to sowing

density measured on a continuous scale of seeds/m2. A single sample of

independent measurements of yield over a range of sowing densities

allows the effect of sowing density to be tested with a statistical model

having the same structure as the one for the categorical factor:

Y ¼ A þ e

We read this simple linear regression model as: ‘Variation in the response

variable [Y] is explained by [¼] variation in a covariate [A] in addition to

[þ] residual variation [e]’. The process of distinguishing between the test

hypothesis and a null hypothesis of no effect is exactly the same for the

covariate as for the categorical factor. The null hypothesis is rejected and

the covariate deemed to cause a significant linear trend if P< a.

Users of statistics employ a variety of terminologies to describe the

same thing. One-factor designs may be referred to as one-way designs.

The response may be referred to as the data or dependent variable; each

hypothesised effect may be referred to as a factor, predictor or treatment,

or independent or explanatory variable; categories of a factor may be

referred to as levels, samples or treatments; and the observations or

measures within a sample as data points, variates or scores. Each obser-

vation is made on a different sampling unit which may take the form of an

individual subject or plot of land, or be one of several repeated measures

on the same subject or block of land. The residual variation may be

referred to as the unexplained or error variation. The precise meanings of

these terms will become apparent with use of different models, for some

of which residual and error variation are the same thing and others not,

and so on. A summary of the standard notation for this book can be

found on page 44, and further clarification of important distinctions is

provided by the Glossary on page 271.

The full versatility of ANOVA becomes apparent when we wish to

expand the model to accommodate two or more factors, either catego-

rical or continuous or both. For example, an irrigation treatment may be

applied to a sample of five maize fields and compared to a control sample

of five non-irrigated fields. Yield is measured from a sample of three

randomly distributed plots within each field. Thus, in addition to dif-

ferences between plots that are the result of the irrigation treatments,

plots may differ between fields within the same treatment (due to

uncontrolled variables). This design has an Irrigation factor A with two

levels: treatment and control, and a Field factor B with five levels per
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level of A. Factor B is nested in A, because each field belongs to only one

level of A. This two-factor nested model is written as:

Y ¼ A þ B0ðAÞ þ e

The model equation is read as: ‘Variation in growth rate [Y] is explained

by [¼] variation between treatment and control fields [A], and [þ] var-

iation between fields nested within each treatment level [B0(A)], in addi-

tion to [þ] residual variation between plots within each field [e]’. This

model has two test hypotheses: one for each factor. At the cost of greater

design complexity, we are now able to test the region-wide applicability of

irrigation, given by the A effect, even in the presence of natural variation

between fields, given by the B0(A) effect.

The site factor B0 is conventionally written as B-prime in order to

identify it as a random factor, meaning that each treatment level is

assigned to a random sample of fields. Factor A is without prime, thereby

identifying it as a fixed factor, with levels that are fixed by the investigator –

in this example, as the two levels of treatment and control. We will return

again to fixed and random factors in a later section (page 16), because

the distinction between them underpins the logic of ANOVA. A nested

model such as the one above may be presented in the abbreviated form:

‘Y¼B0(A)þ e’, which implies testing for the main effect A as well as B0(A).

Likewise, the abbreviated description: Y¼C0(B0(A))þ e implies testing for

A and B0(A) as well as C0(B0(A)).

As an alternative or a supplement to nesting, we use designs with

crossed factors when we wish to test independent but simultaneous

sources of variation that may have additive or multiplicative effects. For

example, seedlings may be treated simultaneously with different levels of

both a watering regime (A) and a sowing density (B). This is a factorial

model if each level of each factor is tested in combination with each level

of the other. It is written as:

Y ¼ A þ B þ B*A þ e

The model equation is read as: ‘Variation in growth rate [Y] is explained

by [¼] variation in watering [A], and independently [þ] by variation in

sowing density [B], and also [þ] by an inter-dependent effect [B*A], in

addition to [þ] residual within-sample variation [e]’. This model has three

test hypotheses: one for each factor and one for the interaction between

them. We are now able to test whether A and B act on the response as

independent main effects A and B additively, or whether the effect of each

factor on Y depends on the other factor in an interaction B*A. An
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interaction means that the effects of A are not the same at all levels of B,

and conversely the effects of B differ according to the level of A. This

factorial model can be written in abbreviated form: ‘Y¼B|Aþ e’, where

the vertical separator abbreviates for ‘all main effects and interactions of

the factors’. Likewise, the description of a three-factor model as: Y¼
C|B|Aþ e abbreviates for all three main effects and all three two-way

interactions and the three-way interaction:

Y ¼ A þ B þ B*A þ C þ C*A þ C*B þ C*B*A þ e

For any ANOVA with more than one factor, the terms in the model must

be entered in a logical order of main effects preceding their nested effects

and interactions, and lower-order interactions preceding higher-order

interactions. This logical ordering permits the analysis to account for

independent components in hierarchical sequence.

This book will describe all the combinations of one, two and three

factors, whether nested in each other or crossed with each other. For

example, the above cross-factored and nested models may be combined

to give either model 3.3 on page 98: Y¼C|B(A)þ e, which is also described

with an example on page 51, or model 3.4 on page 109: Y¼C(B|A)þ e.
Throughout, we emphasise the need to identify the correct statistical

model at the stage of designing data collection. It is possible, and indeed

all too easy, to collect whatever data you can wherever you can get it, and

then to let a statistical package find the model for you at the analysis

stage. If you operate in this way, then you will have no need for this

book, but the analyses will certainly lead you to draw unconvincing or

wrong inferences. Effective science, whether experimental or mensurative,

depends on you thinking about the statistical model when designing

your study.

What is an ANOVA model?

Any statistical test of pattern requires a model against which to test

the null hypothesis of no pattern. Models for ANOVA take the form:

Response¼Factor(s)þ e, where the response refers to the data that

require explaining, the factor or factors are the putative explanatory

variables contributing to the observed pattern of variation in the

response, and e is the residual variation in the response left

unexplained by the factor(s). For each of the ANOVA designs that

we describe in Chapters 1 to 7, we express its underlying model in

three ways to highlight different features of its structure. For
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example, the two-factor nested model introduced above is described

by its:

� Full model, packed up into a single expression: Y¼B0(A)þ e;
� Hierarchical nesting of sampling units in factors: S0(B0(A));

� Testable terms for analysis, unpacked from the full model:

AþB(A).

A statistics package will require you to specify the ANOVA model

desired for a given dataset. You will need to declare which column

contains the response variable Y, which column(s) contain the

explanatory variable(s) to be tested, any nesting or cross factoring

of multiple factors (these are the ‘testable terms’ above), whether any

of the factors are random (further detailed on page 16) and whether

any are covariates of the response (page 29). On page 259, we

describe a typical dataset structure and associate it with various

models.

In the event that the analysis indicates a real effect, this outcome

can be described succinctly (detailed on page 260) and illustrated with

a graph. Figure 1(a) shows a typical illustration of differences

between group means for a model Y¼Aþ e, with three levels of A.

The significance of the pattern is evident in the large differences

between the three means relative to the residual variation around the

means. A non-significant effect of factor A would result from larger

sample variances, or sample means all taking similar values.

General principles of ANOVA

Analysis of variance tests an effect of interest on a response variable of

interest by analysing how much of the total variation in the response can

be explained by the effect. Differences among sampling units may arise

from one or more measured factors making up the effect(s) of interest,

but it will certainly also arise from other sources of unmeasured varia-

tion. Estimating the significance of a hypothesised effect on the response

requires taking measurements from more than one sampling unit in each

level of a categorical factor, or across several values of a covariate. The

sampling units must each provide independent information from a ran-

dom sample of the factor level or covariate value, in order to quantify the

underlying unmeasured variation. This random variation can then be

used to calibrate the variation explained by the factor of interest.
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For example, we can use ANOVA to test whether gender contributes

significantly to explaining variation in birth weights of babies. To assess the

effect of gender as a factor in the birth-weight response, it makes sense to

weigh one sample of male babies and another of female babies, with each

baby picked at random from within the population of interest (perhaps a

geographical region or an ethnic group). These babies serve as the replicate

sampling units in each of the two levels (male and female) of the factor

gender. The babies must be chosen at random from the defined population

to avoid introducing any bias that might reinforce a preconceived notion,

for example by selecting heavier males and lighter females. They should also

contribute independent information to the analysis, so twins should be

avoided where the weight of one provides information about the weight of

the other. The ANOVA on these samples of independent and random

replicates will indicate a significant effect of gender if the average difference

in weight between the male and female samples is large compared to the

variation in weight within each sample.

ANOVA works on the simple and logical principle of partitioning

variation in a continuous response Y into explained and unexplained

components, and evaluating the effect of a particular factor as the ratio

between the two components. The method of partitioning explained from

unexplained variation differs slightly depending on whether the ANOVA

is used to compare the response among levels of a categorical factor or to

analyse a relationship between the response and a covariate. We will treat

these two methods in turn.

Analysis of variance on a categorical factor tests for a difference in

average response among factor levels. The total variation in the response is

given by the sum of all observations, measured as their squared deviations

from the response grand mean ��y. This quantity is called the total sum of

squares, SStotal (Figure 1). The use of squared deviations then allows this

total variation to be partitioned into two sources. The variation explained

by the factor is given by the sum of squared deviations of each group mean

y�i from the grand mean ��y, weighted by the n values per group (where

subscript i refers to the i-th level of the factor). This quantity is called the

explained sum of squares, SSexplained. The residual variation left unex-

plained by the model is given by the sum of squared deviations of each data

point yij from its own group mean y�i (where subscript ij refers to the jth

observation in the i-th factor level). This quantity SSresidual is variously

referred to as the residual, error, or unexplained sum of squares.

Each sum of squares (SS) has a certain number of degrees of freedom

(d.f.) associated with it. These are the number of independent pieces of
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information required to measure the component of variation, subtracted

from the total number of pieces contributing to that variation. The total

variation always has degrees of freedom that equal one less than the total

number of data points, because it uses just the grand mean to calculate

variation among all the data points. A one-factor model with n obser-

vations in each of a groups has a� 1 d.f. for the explained component

of variation, because we require one grand mean to measure between-

group variation among the a means; it has na� a¼ (n� 1)a d.f. for the

residual component, because we require a group means to measure
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Figure 1 Dataset of three samples (a) summarised as group means and

standard deviations, and (b) showing the j¼ 8 observations in each of the

i¼ 3 groups. Total variation in the dataset, measured by the sum of squared

deviations of each observation (yij) from the grand mean (��y), is partitioned

into an explained component that measures variation among the group

means (�yi), and an unexplained or residual component that measures

variation among the data points within each group. The deviations indicated

for the mean of group i and its j-th data point are summed across all data to

obtain the model sums of squares.
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within-group variation among all na data points. These explained and

residual degrees of freedom sum to the na� 1 total d.f.

Dividing each SS by its d.f. gives each component a mean square (MS)

which is a measure of the variation per degree of freedom explained by

that source. The explained component of variation is judged to contribute

significantly to total variation in the response if it has a high ratio of its MS

to the MS for the unexplained residual variance. This ratio is the estimated

F-value from the continuous probability distribution of the random vari-

able F. The F distribution for the given explained and residual d.f. is used

to determine the probability P of obtaining at least as large a value of the

observed ratio of sample variances, given a true ratio between variances

equal to unity. Researchers in the life sciences often consider a probability

of a¼ 0.05 to be an acceptably safe threshold for rejecting the null

hypothesis of insignificant explained variation. An effect is then considered

significant if its F-value has an associated P< 0.05 (Table 1), indicating a

less than 5% probability of making a mistake by rejecting a true null

hypothesis of no effect (the Type I error rate). This is reported by writing

Fa–1,(n–1)a¼#.##, P< 0.05, where the subscript ‘a� 1, (n� 1)a’ are the

numbers of test and error d.f. respectively. Every F-value must always be

reported with these two sets of d.f. (further detailed on page 260) because

they provide information about the amount of replication, and therefore

the power of the test to detect patterns.

The validity of the ANOVA test depends on three assumptions about

the residual variance: that the random variation around sample means

has the same magnitude at all levels of the factor, that the residuals

contributing to this variation are free to vary independently of each

Table 1 Generalised ANOVA table for testing a categorical factor, showing

explained and residual (unexplained) sums of squares (SS), degrees of

freedom (d.f.) and mean squares (MS), F-ratio and associated P-value.

Subscript i refers to the ith group, and j to the jth observation in that group.

Component

of variation SS d.f. MS F-ratio P

Explained
Pa

i¼1 n 	 �yi � ��yð Þ2 a� 1 SSexpl/d.f.expl MSexpl/MSres < 0.05?

Residual
Pa

i¼1

Pn
j¼1ðyij � �yiÞ2 (n� 1)a SSres/d.f.res

Total
Pa

i¼1

Pn
j¼1 yij � ��y

� �2
na� 1
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