
Chapter 1

Forward look

1.1 Stages in a statistically designed experiment

There are several stages in designing an experiment and carrying it out.

1.1.1 Consultation

The scientist, or other investigator, comes to the statistician to ask advice on the design of the
experiment. Sometimes an appointment is made; sometimes the approach is by telephone or
email with the expectation of an instant answer. A fortunate statistician will already have a
good working relationship with the scientist. In some cases the scientist and statistician will
both view their joint work as a collaboration.

Ideally the consultation happens in plenty of time before the experiment. The statistician
will have to ask questions to find out about the experiment, and the answers may not be
immediately available. Then the statistician needs time to think, and to compare different
possible designs. In complicated cases the statistician may need to consult other statisticians
more specialized in some aspect of design.

Unfortunately, the statistician is sometimes consulted only the day before the experiment
starts. What should you do then? If it is obvious that the scientist has contacted you just so that
he can write ‘Yes’ on a form in response to the question ‘Have you consulted a statistician?’
then he is not worth spending time on. More commonly the scientist genuinely has no idea that
statistical design takes time. In that case, ask enough questions to find out the main features
of the experiment, and give a simple design that seems to answer the purpose. Impress on the
scientist that this design may not be the best possible, and that you can do better if given more
notice. Try to find out more about this sort of experiment so that you are better prepared the
next time that this person, or one of her colleagues, comes to you.

Usually the scientist does not come with statistically precise requirements. You have to
elucidate this information by careful questioning. About 90% of the statistician’s input at
this stage is asking questions. These have to be phrased in terms that a non-statistician can
understand. Equally, you must not be shy about asking the scientist to explain technical terms
from his field if they seem relevant.

If the scientist does have a preconceived idea of a ‘design’, it may be chosen from an
artificially short list, based on lack of knowledge of what is available. Too many books and

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-68357-9 - Design of Comparative Experiments
R. A. Bailey
Excerpt
More information

http://www.cambridge.org/0521683572
http://www.cambridge.org
http://www.cambridge.org


2 Chapter 1. Forward look

courses give a list of three or four designs and manage to suggest that there are no others.
Your job may be to persuade the scientist that a better design is available, even if it did not
figure in the textbook from which she learnt statistics.

Example 1.1 (Ladybirds) A famous company (which I shall not name) had designed an
experiment to compare a new pesticide which they had developed, a standard pesticide, and
‘no treatment’. They wanted to convince the regulatory authority (the Ministry of Agricul-
ture, Fisheries and Foods) that their new pesticide was effective but did not harm ladybirds.
I investigated the data from the experiment, and noticed that they had divided a field into
three areas, applied one pesticide (or nothing) to each area, and made measurements on three
samples from each area. I asked the people who had designed it what the design was. They
said that it was completely randomized (see Chapter 2). I said that I could see that it was not
completely randomized, because all the samples for each pesticide came from the same area
of the field. They replied that it must be completely randomized because there were no blocks
(see Chapter 4) and it was not a Latin square (see Chapter 6). In defence of their argument
they quoted a respectable textbook which gives only these three designs.

1.1.2 Statistical design

Most of this book is about statistical design. The only purpose in mentioning it here is to show
how it fits into the process of experimentation.

1.1.3 Data collection

In collaboration with the scientist, design a form for collecting the data. This should either
be on squared paper, with squares large enough to write on conveniently, or use the modern
electronic equivalent, a spreadsheet or a hand-held data-logger. There should be a row for
each observational unit (see Section 1.4) and a column for each variable that is to be recorded.
It is better if these variables are decided before the experiment is started, but always leave
space to include extra information whose relevance is not known until later.

Emphasize to the scientist that all relevant data should be recorded as soon as possible.
They should never be copied into a ‘neater’ format; human beings almost always make errors
when copying data. Nor should they be invented later.

Example 1.2 (Calf feeding) In a calf-feeding trial each calf was weighed several times, once
at birth and thereafter on the nearest Tuesday to certain anniversaries, such as the nearest
Tuesday to its eight-week birthday. The data included all these dates, which proved to be
mutually inconsistent: some were not Tuesdays and some were the wrong length of time apart.
When I queried this I was told that only the birthdate was reliable: all the other dates had been
written down at the end of the experiment by a temporary worker who was doing her best to
follow the ‘nearest Tuesday’ rule after the event. This labour was utterly pointless. If the dates
had been recorded when the calves were weighed they would have provided evidence of how
closely the ‘nearest Tuesday’ rule had been followed; deducing the dates after the event could
more accurately and simply have been done by the computer as part of the data analysis.

Sometimes a scientist wants to take the data from his field notebooks and reorganize them
into a more logical order for the statistician’s benefit. Discourage this practice. Not only does
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1.1. Stages in a statistically designed experiment 3

Plot 8 6
0
7
3
6
0
4
5
6
4

Average 4.1

Plot 23 0
0
0
0
0
0
0

28
0
0

Average 28

Fig. 1.1. Data sheets with intermediate calculations in Example 1.3

it introduce copying errors; reordering the data loses valuable information such as which plots
were next to each other or what was the time sequence in which measurements were made:
see Example 1.5.

For similar reasons, encourage the scientist to present you with the raw data, without
making intermediate calculations. The data will be going into a computer in any case, so
intermediate calculations do not produce any savings and may well produce errors. The only
benefit brought by intermediate calculations is a rough check that certain numbers are the
correct order of magnitude.

Example 1.3 (Leafstripe) In an experiment on leafstripe disease in barley, one measurement
was apparently the percentage of disease on each plot. A preliminary graph of the data showed
one outlier far away from the rest of the data. I asked to see the data for the outlying plot, and
was given a collection of pieces of paper like those shown in Figure 1.1. It transpired that the
agronomist had taken a random sample of ten quadrats in each plot, had inspected 100 tillers
(sideshoots) in each quadrat to see how many were infected, and averaged the ten numbers.
Only the average was recorded in the ‘official’ data. For the outlying plot the agronomist
rightly thought that he did not need a calculator to add nine zeros to one nonzero number, but
he did forget to divide the total by 10. Once I had corrected the average value for this plot, it
fell into line with the rest of the data.

Also try to persuade the scientist that data collection is too important to be delegated to
junior staff, especially temporary ones. An experiment cannot be better than its data, but a
surprising number of good scientists will put much effort into their science while believing
that the data can take care of themselves. Unless they really feel part of the team, junior or
temporary staff simply do not have the same motivation to record the data carefully, even if
they are conscientious. See also Example 1.2.

1.1.4 Data scrutiny

After the experiment is done, the data sheets or data files should be sent to the statistician
for analysis. Look over these as soon as possible for obvious anomalies, outliers or evidence
of bad practice. Can that number really be a calf’s birthweight? Experienced statisticians
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4 Chapter 1. Forward look

become remarkably good at ‘data sniffing’—looking over a sheet of figures and finding the
one or two anomalies. That is how the errors in Example 1.2 were found. Simple tables and
graphs can also show up errors: in Example 1.3 the outlier was revealed by a graph of yield
in tonnes per hectare against percentage of infected tillers.

Examine the final digits in the data. If the number of significant figures changes at one
point, this may indicate a change in the person recording the data or the machine being used.
Occasionally it indicates a change such as from weighing in pounds to weighing in kilograms
and dividing by 2.205. Any such change is likely to coincide with a change in conditions
which is more serious than the appearance of the data. These checks are easier to conduct on
paper data than on electronic data, because most spreadsheets give no facility for distinguish-
ing between 29 and 29.00.

Example 1.4 (Kiwi fruit) At an agricultural research station in New Zealand, an instrument
called a penetrometer was used to measure the hardness of kiwi fruit. After a preliminary
analysis of the data, the statistician examined a graph of residuals and realized that there
was something wrong with the data. He looked again at the data sheet, and noticed that
two different handwritings had been used. He re-analysed the data, letting the data in one
handwriting be an unknown constant multiple of those in the other. The fitted value of the
constant was 2.2, indicating that one person had recorded in pounds, the other in kilograms.

Query dubious data while it is still fresh in the scientist’s memory. That way there is a
chance that either the data can be corrected or other explanatory information recorded.

Example 1.5 (Rain at harvest) In an experiment whose response was the yield of wheat on
each plot, the numbers recorded on the last 12 plots out of a total of 72 were noticeably lower
than the others. I asked if there was any reason for this, and was told that it had started to
rain during the harvest, with the rain starting when the harvester was about 12 plots from the
end. We were therefore able to include an extra variable ‘rain’, whose values were 60 zeros
followed by 1, 2, . . . , 12. Including ‘rain’ as a covariate in the analysis removed a lot of
otherwise unexplained variation.

Example 1.6 (Eucalypts) In a forestry progeny trial in Asia, different families of eucalypts
were grown in five-tree plots. After 36 months, a forestry worker measured the diameter of
each tree at breast height. In the preliminary examination of the data, the statistician calculated
the variance of the five responses in each plot, and found that every plot had exactly the same
variance! Challenged on this, the forestry worker admitted that he had measured every tree in
the first plot, but thereafter measured just tree 1 in each plot. For trees 2–5 he had added the
constant c to the measurements from plot 1, where c was the difference between the diameter
at breast height of tree 1 in this plot and the diameter at breast height of tree 1 in plot 1.

In this case, the statistician’s preliminary scrutiny showed that the data were largely bogus.

1.1.5 Analysis

This means calculations with the data. It should be planned at the design stage, because you
cannot decide if a design is good until you know how the data will be analysed. Also, this
planning enables the experimenter to be sure that she is collecting the relevant data. If neces-
sary, the analysis may be modified in the light of unforeseen circumstances: see Example 1.5.
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1.2. The ideal and the reality 5

For a simple design the statistician should, in principle, be able to analyse the data by
hand, with a calculator. In practice, it is more sensible to use a reliable statistical computing
package. A good package should ask the user to distinguish plot structure from treatment
structure, as in Section 1.4; it should be able to handle all the structures given in Section 1.4;
and it should automatically calculate the correct variance ratios for experiments like those in
Chapters 8 and 10. It is a good idea to do the planned analysis on dummy data before the real
data arrive, to avoid any unnecessary delay.

Many other statistics books are concerned almost exclusively with analysis. In this book
we cover only enough of it to help with the process of designing experiments.

1.1.6 Interpretation

The data analysis will produce such things as analysis-of-variance tables, lists of means and
standard errors, P-values and so on. None of these may mean very much to the scientist. It
is the statistician’s job to interpret the results of the analysis in terms which the scientist can
understand, and which are pertinent to his original question.

1.2 The ideal and the reality

Here I discuss a few of the tensions between what the statistician thinks is desirable and what
the experimenter wants.

1.2.1 Purpose of the experiment

Why is the experiment being done? If the answer is ‘to use an empty greenhouse’ or ‘to
publish another paper’, do not put much statistical effort into it. A more legitimate answer
is ‘to find out about the differences between so-and-so’, but even this is too vague for the
statistician to be really helpful.

Ideally, the aims of the experiment should be phrased in terms of specific questions. The
aim may be to estimate something: for example, ‘How much better is Drug A than Drug B?’
This question needs refining: how much of each drug? how administered? to whom? and
how will ‘better’ be measured? For estimation questions we should aim to obtain unbiased
estimators with low variance.

On the other hand, the aim may be to test a hypothesis, for example that there is no effect-
ive difference between organic and inorganic sources of nitrogen fertilizer. Again the question
needs refining: how much fertilizer? applied to what crop? in what sorts of circumstances? is
the effect on the yield or the taste or the colour? For hypothesis testing we want high power
of detecting differences that are big enough to matter in the science involved.

1.2.2 Replication

This is the word for the number of times that each treatment is tested.
The well-known formula for the variance of the mean of n numbers is σ2/n, on the

assumption that the numbers are a random sample from a population with variance σ2. Increas-
ing the replication usually decreases the variance, because it increases the value of n.

On the other hand, increased replication may raise the variance. Typically, a larger number
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6 Chapter 1. Forward look

of experimental units are more variable than a small number, so increasing the replication may
increase the value of σ2. Sometimes this increase outweighs the increase in n.

Increased replication usually raises power. This is because it usually raises the number
of residual degrees of freedom, and certain important families of distribution (such as t) have
slimmer tails when they have more degrees of freedom.

The one thing that is almost certain about increased replication is that it increases costs,
which the experimenter usually wants to keep down.

1.2.3 Local control

This means dividing the set of experimental units into blocks of alike units: see Chapter 4. It
is also called blocking.

If it is done well, blocking lowers the variance, by removing some sources of variabil-
ity from treatment contrasts. If each block is representative rather than homogeneous then
blocking has the opposite effect.

Blocking can increase the variance if it forces the design to be non-orthogonal: see Chap-
ter 11.

Because blocking almost always decreases the variance, it usually raises power. However,
it decreases the number of residual degrees of freedom, so it can reduce power if numbers are
small: see Example 4.15.

Blocking increases the complexity of the design. In turn this not only increases the com-
plexity of the analysis and interpretation but gives more scope for mistakes in procedure dur-
ing the experiment.

1.2.4 Constraints

The most obvious constraint is cost. Everybody will be pleased if the same results can be
achieved for less money. If you can design a smaller, cheaper experiment than the scientist
proposes, this is fine if it produces good estimators. On the other hand, it may be impossible to
draw clear conclusions from an experiment that is too small, so then the entire cost is wasted.
Part of your duty is to warn when you believe that the whole experiment will be wasted.

The availability of the test materials may provide a constraint. For example, in testing new
varieties of wheat there may be limited quantities of seed of some or all of the new varieties.

Availability of the experimental units provides a different sort of constraint. There may
be competition with other experimenters to use land or bench space. If results are needed
by a certain deadline then time limits the number of experimental units. In a clinical trial it
is unethical to use far too many patients because this unnecessarily increases the number of
patients who do not get the best treatment. On the other hand, it is also unethical to use so
few patients that no clear conclusions can be drawn, for then all the patients have been used
in vain. Similar remarks apply to experiments on animals in which the animals have to be
sacrificed.

If there are natural ‘blocks’ or divisions among the experimental units these may force
constraints on the way that the experiment can be carried out. For example, it may be impos-
sible to have all vaccinations administered by the same nurse.

There are often other constraints imposed by the management of the experiment. For
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1.3. An example 7

example, temporary apple-pickers like to work with their friends: it may be unrealistic to
expect them each to pick from separate rows of trees.

1.2.5 Choice

Given all the constraints, there are still two fundamentally important choices that have to be
made and where the statistician can provide advice.

Which treatments are to be tested? The scientist usually has a clear idea, but questions can
still be helpful. Why did he decide on these particular quantities? Why these combinations
and not others? Should he consider changing two factors at a time? (see Chapter 5). Does the
inclusion of less interesting treatments (such as the boss’s favourite) mean that the replication
for all treatments will be too low?

There is a strong belief in scientific circles that all new treatments should be compared
with ‘no treatment’, which is often called control. You should always ask if a control is
needed. Scientific orthodoxy says yes, but there are experiments where a control can be
harmful. If there is already an effective therapy for a disease then it is unethical to run an
experiment comparing a new therapy to ‘do nothing’; in this case the treatments should be the
new therapy and the one currently in use. In a trial of several pesticides in one field, if there
is a ‘do nothing’ treatment on some plots then the pest may multiply on those plots and then
spread to the others. A ‘do nothing’ treatment is also not useful if this would never be used in
practice.

Sometimes it is already known that the ‘do nothing’ treatment has a very different effect
from all the other treatments. Then the experiment may do nothing more than confirm this,
as in Examples 3.2 and 6.3. In such cases, it is better to omit the ‘do nothing’ treatment so
that more resources can be devoted to finding out whether there is any difference between the
other treatments.

Which experimental units should be used? For example, is it better to use portions of
representative farmers’ fields or a well-controlled experimental farm? The latter is better
if the effect to be detected is likely to be small, or if one of the treatments is sufficiently
unknown that it might have disastrous economic or environmental consequences. The former
is better for a large confirmatory experiment, before recommending varieties or treatments
for use on a wide scale. Similarly, is it better to use 36 heifers from the same herd or 36
bought at the market specifically for this experiment? University students are a convenient
source of experimental units for psychologists, but how far can results valid for such students
be extrapolated to the general population?

1.3 An example

An example will help to fix ideas.

Example 1.7 (Rye-grass) An experiment was conducted to compare three different cultivars
of rye-grass in combination with four quantities of nitrogen fertilizer. Two responses were
measured: one was the total weight of dry matter harvested from each plot, and the other was
the percentage of water-soluble carbohydrate in the crop.

The three cultivars of rye-grass were called Cropper, Melle and Melba. The four amounts
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8 Chapter 1. Forward look

0 160 240 160 80 0

160 80 80 0 160 80

80 0 160 240 0 240

240 240 0 80 240 160

↑ ↑ ↑ ↑ ↑ ↑
Cropper Melba Melle Melba Cropper Melle

Fig. 1.2. Layout of the rye-grass experiment in Example 1.7

of fertilizer were 0 kg/ha, 80 kg/ha, 160 kg/ha and 240 kg/ha.
The experimental area consisted of two fields, each divided into three strips of land. Each

strip consisted of four plots.
Cultivars were sown on whole strips because it is not practicable to sow them in small

areas unless sowing is done by hand. In contrast, it is perfectly feasible to apply fertilizers to
smaller areas of land, such as the plots. The layout for the experiment is shown in Figure 1.2.

Notice the pattern. Each amount of nitrogen is applied to one plot per strip, and each
cultivar is applied to one strip per field. This pattern is the combinatorial design.

Notice the lack of pattern. There is no systematic order in the allocation of cultivars to
strips in each field, nor any systematic order in the allocation of amounts of nitrogen to plots
in each strip. This lack of pattern is the randomization.

1.4 Defining terms

Definition An experimental unit is the smallest unit to which a treatment can be applied.

Definition A treatment is the entire description of what can be applied to an experimental
unit.

Although the previous two definitions appear to be circular, they work well enough in
practice.

Definition An observational unit is the smallest unit on which a response will be measured.

Example 1.6 revisited (Eucalypts) The experimental units were the plots. The observational
units should have been the trees.

Example 1.8 (Wheat varieties) The experiment compares different varieties of wheat grown
in plots in a field. Here the experimental units are the plots and the treatments are the varieties.
We cannot tell what the observational unit is without more information. Probably a plot is the
observational unit, but it might be an individual plant. It might even be the whole field.
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1.4. Defining terms 9

whole class small groups
one hour once per week

√ √
12 minutes every day

√ √

Fig. 1.3. Four treatments in Example 1.10

Example 1.7 revisited (Rye-grass) Here the treatments are the combinations of cultivars with
amounts of fertilizer, so there are twelve treatments. The experimental unit is the plot. The
observational unit is probably the plot but might be a plant or a strip.

Example 1.2 revisited (Calf feeding) Here the treatments were different compositions of
feed for calves. The calves were not fed individually. They were housed in pens, with ten
calves per pen. Each pen was allocated to a certain type of feed. Batches of this type of feed
were put into the pen; calves were free to eat as much of this as they liked. Calves were
weighed individually.

The experimental units were the pens but the observational units were the calves.

Example 1.9 (Asthma) Several patients take part in an experiment to compare drugs intended
to alleviate the symptoms of chronic asthma. For each patient, the drugs are changed each
month. From time to time each patient comes into the clinic, where the peak flow rate in their
lungs is measured.

Here the treatments are the drugs. An experimental unit is a patient-month combination, so
if 30 patients are used for 6 months then there are 180 experimental units. The observational
unit is a visit by a patient to the clinic; we do not know how this relates to the patient-months
without further information.

Example 1.10 (Mental arithmetic) After calculators became widespread, there was concern
that children in primary schools were no longer becoming proficient in mental arithmetic. One
suggested remedy was whole-class sessions, where the teacher would call out a question such
as ‘5 + 7?’ and children would put up their hands to offer to give the correct answer. An
alternative suggestion was to do this in small groups of about four children, to encourage
those who were shy of responding in front of the whole class. Another question was: is it
better to have these sessions for one hour once a week or for 10–12 minutes every day?

The treatments are the four combinations of group size and timing shown in Figure 1.3.
Each treatment can be applied only to a whole class, so the experimental units are classes.
However, to measure the effectiveness of the treatments, each child must take an individual
test of mental arithmetic after some set time. Thus the observational units are the children.

Example 1.11 (Detergents) In a consumer experiment, ten housewives test new detergents.
Each housewife tests one detergent per washload for each of four washloads. She assesses
the cleanliness of each washload on a given 5-point scale. Here the 40 washloads are the
experimental units and the observational units; the detergents are the treatments.

Example 1.12 (Tomatoes) Different varieties of tomato are grown in pots, with different
composts and different amounts of water. Each plant is supported on a vertical stick until
it is 1.5 metres high, then all further new growth is wound around a horizontal rail. Groups
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10 Chapter 1. Forward look

of five adjacent plants are wound around the same rail. When the tomatoes are ripe they are
harvested and the weight of saleable tomatoes per rail is recorded.

Now the treatment is the variety–compost–water combination. The pots are the experi-
mental units but the rails are the observational units.

These examples show that there are four possible relationships between experimental units
and observational units.

(i) The experimental units and the observational units are the same. This is the most usual
situation. It occurs in Example 1.11; in Examples 1.7 and 1.8 if there is one measure-
ment per plot; in Example 1.9 if there is one measurement of peak flow rate in lungs
per patient per month.

(ii) Each experimental unit consists of several observational units. This is usually forced
by practical considerations, as in Examples 1.2 and 1.10. Examples 1.7 and 1.8 are of
this type if the observational unit is a plant. So is Example 1.9 if the observational unit
is a patient-week. This situation is fine so long as the data are analysed properly: see
Chapter 8.

(iii) Each observational unit consists of several experimental units. This would occur in
Example 1.9 if each patient had their drugs changed monthly but their peak flow rate
measured only every three months. It would also occur in Examples 1.7 and 1.8 if the
observational unit were the strip or field respectively. In these cases the measurements
cannot be linked to individual treatments so there is no point in conducting such an
experiment.

Example 1.12 also appears to be of this form. Because the experiment would be useless
if different pots in the same group (allocated to the same rail) had different treatments,
in effect it is the group of pots that is the experimental unit, not the individual pot.

In fact, there are some unusual experiments where the response on the observational
unit can be considered to be the sum of the (unknown) responses on the experimental
units contained within it. However, these are beyond the scope of this book.

(iv) Experimental units and observational units have a partial overlap, but neither is con-
tained in the other. This case is even sillier than the preceding one.

It is useful to write down the experimental units and the observational units in the experi-
mental protocol. This should draw attention to cases (iii) and (iv) before it is too late to change
the protocol.

Definition In cases (i) and (ii) an observational unit will often be called a plot for brevity.

This usage is justified by the large amount of early work on experimental design that took
place in agricultural research. However, it can be a little disconcerting if the plot is actually
a person or half a leaf. It is a useful shorthand in this book, but is not recommended for your
conversations with scientists.

Notation In this book, general plots are denoted by lower-case Greek letters, such as α, β,
γ, ω. The whole set of plots is denoted by Ω, and the number of plots by N.
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