Interpretation of Emergency Head CT
A Practical Handbook
Interpretation of Emergency Head CT
A Practical Handbook

Erskine J. Holmes, MRCS
Consultant in Emergency Medicine
Wexham Park Hospital, Slough

Anna C. Forest-Hay, MA, FRCS (A&E) Edin, FCEM
Consultant in Paediatric and Adult Emergency Medicine
Wexham Park Hospital, Slough

Rakesh R. Misra, BSc (Hons), FRCS (Eng), FRCR
Consultant Radiologist, Wycombe Hospital
Buckinghamshire Hospitals NHS Trust

Editor
R. R. Misra
Dedicated to my wife Jill for her support, help and love over the years.

E. J. H.

I would like to dedicate this book to my father, Iain, for being my inspiration and mentor.

A. F-H.

Dedicated to my beautiful wife, Rachel, and children, Rohan, Ela and Krishan, for allowing me the time to write this book.

R. R. M.
CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xii</td>
</tr>
<tr>
<td>Introduction</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Section 1

1. Fundamentals of CT imaging
 - History
 - Technical details
 - Windowing and grey scale
 - Tissue characteristics
 - Image artefacts
2. Important anatomical considerations
 - Review of normal anatomy
 - Review of vascular territories
 - Review of vascular anatomy

Section 2

1. Reviewing a CT scan
2. Acute stroke
 - Ischaemic stroke
 - Haemorrhagic stroke
3. Subdural haematoma (SDH)
4. Extradural haematoma
5. Subarachnoid haemorrhage
6. Cerebral venous sinus thrombosis
7. Contusions
8. Skull fractures
9. Meningitis
10. Raised intracranial pressure
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocephalus</td>
<td>77</td>
</tr>
<tr>
<td>Abscesses</td>
<td>80</td>
</tr>
<tr>
<td>Arteriovenous malformation</td>
<td>83</td>
</tr>
<tr>
<td>Solitary lesions</td>
<td>86</td>
</tr>
<tr>
<td>Multiple lesions</td>
<td>89</td>
</tr>
<tr>
<td>Self-assessment section</td>
<td>92</td>
</tr>
<tr>
<td>Self Assessment – Answers</td>
<td>95</td>
</tr>
<tr>
<td>Appendices</td>
<td>101</td>
</tr>
<tr>
<td>Differential diagnosis of intracerebral lesions</td>
<td>103</td>
</tr>
<tr>
<td>CT guidelines for head trauma</td>
<td>105</td>
</tr>
<tr>
<td>Proposed algorithm for the emergency management of acute stroke</td>
<td>106</td>
</tr>
<tr>
<td>Information required prior to neurosurgical referral</td>
<td>108</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The authors would sincerely like to thank Dr Jagrit Shah, Consultant Radiologist, Queen’s Medical Centre, Nottingham, for generously donating several key images.

We would also like to thank Dr Matthew Burn, Consultant Stroke Physician, Wycombe Hospital, Buckinghamshire Hospitals NHS Trust. Matthew read and edited the final manuscript, and provided invaluable advice from a Stroke Physician’s perspective. His contribution is greatly appreciated.

Sincere thanks to Luc Bouwman – CT Product Manager, Toshiba Medical Systems, Europe, for meticulously drawing all the superb images in Section 1.
PREFACE

Welcome to the first handbook of CT brain interpretation. Focus has been placed on including a greater number of images than would normally be found in a book of this size. The resolution has been heightened and the accompanying text limited to precise details, in order to achieve our goal: that is to equip a wide variety of medical professionals with a general understanding of head CT. A schema is provided by which to analyse the images, in order to develop greater confidence to diagnose the most common and critical problems. It is hoped that this book will be invaluable to individuals who find themselves, more and more, in the acute decision-making setting. This includes Emergency Physicians, Surgeons, Neurosurgeons, Trauma or Orthopaedic Surgeons, Radiographers and Elderly Care physicians. It is also intended to be instructive to radiology trainees and medical students alike. All choice topics are included, thus lending itself as an excellent revision aid for anyone preparing for a postgraduate exam. Small enough to carry around, we hope we have provided a reliable reference for what you need to remember, regardless of the time of day or night.
ABBREVIATIONS

ACom Anterior communicating
APTT Activated partial thromboplastin time
AVM Arteriovenous malformation
BP Blood pressure
CCF Congestive cardiac failure
CSF Cerebrospinal fluid
CT Computer tomography
CTV CT venogram
CVA Cerebrovascular accident
ECA External carotid artery
ECG Electrocardiogram
EDH Extradural haemorrhage
ETA Estimated time of arrival
ETT Endotracheal tube
GCS Glasgow Coma Scale
HR Heart rate
HU Hounsfield Unit
i.m. Intramuscular
INR International normalised ratio
i.v. Intravenous
ICA Internal carotid artery
LP Lumbar puncture
M:F Male:female
MCA Middle cerebral artery
NICE National Institute of Clinical Excellence
PCom Posterior communicating
RIND Reversible ischaemic neurological deficit
RR Respiratory rate
SAH Subarachnoid haemorrhage
SDH Subdural haematoma
SLE Systemic lupus erythematosus
SSS Superior sagittal sinus
TIA Transient ischaemic attack
WCC White cell count
INTRODUCTION

Computer tomography (CT) is now widely available and is being used more and more, unlike magnetic resonance imaging, 24 hours a day, 7 days a week. CT is often the initial imaging modality of choice; not only for diagnosis but also to guide treatment.

The most common request for CT out of hours is brain imaging. CT is a vital tool in the assessment of patients with serious head injury. It remains the investigation of choice for the assessment of acute haemorrhage and bony injury. Consequently, patient management has been transformed since its inception, as rapid imaging and diagnosis of intracranial pathology can facilitate emergency intervention. Equally, a delay in diagnosis, and treatment, may adversely affect outcome and prognosis.

Patient’s expectations of modern medical technology are high. There are ever-increasing time pressures to form rapid diagnoses, and improve efficiency, in the face of a more litigious society. The European Working Time Directive is likely to make doctors feel more vulnerable, with shift patterns reducing personal experience and training opportunities. Furthermore, the multidisciplinary team on duty in the Hospital at Night Scheme may not possess the appropriate expertise between them to interpret emergency imaging. Yet, the NICE guidelines are in place to further increase the number of CT scans performed out of hours. To add to this, the nationwide shortage of radiologists results in a limited CT service available out of hours. Hence we have the dilemma of how to provide an adequate emergency imaging service coupled with who will interpret the images.

The College of Emergency Medicine has stipulated that Specialist Registrars in Emergency Medicine are expected to be able to diagnose brain pathology from CT scans of the head. Currently, in many hospitals around the country it is routine for CT head scans, performed out of hours, to be interpreted by the requesting doctor. This is likely to be a progressive future trend, with a variety of speciality groups needing to acquire these skills.

Analogous to this is ECG interpretation; originally the domain of the Cardiologist, this is now a routine general investigation interpreted by most clinicians. It is not inconceivable that medical students, and junior medical staff alike, may need to acquire the basic skills to analyse CT abnormalities in the future, if we are to keep pace with the ever-increasing demand.

The purpose of this book is to provide a systematic approach by which to interpret and provisionally report head CT scans, based on learning to recognise common pathologies from an archive of representative images.