Modal Logic for Philosophers

Designed for use by philosophy students, this book provides an accessible yet technically sound treatment of modal logic and its philosophical applications. Every effort has been made to simplify the presentation by using diagrams in place of more complex mathematical apparatus. These and other innovations provide philosophers with easy access to a rich variety of topics in modal logic, including a full coverage of quantified modal logic, nonrigid designators, definite descriptions, and the de re–de dicto distinction. Discussion of philosophical issues concerning the development of modal logic is woven into the text.

The book uses natural deduction systems and includes a diagram technique that extends the method of truth trees to modal logic. This feature provides a foundation for a novel method for showing completeness, one that is easy to extend to systems that include quantifiers.

James W. Garson is professor of philosophy at the University of Houston. He has held grants from the National Endowment for the Humanities, the National Science Foundation, and the Apple Education Foundation. He is also the author of numerous articles in logic, semantics, linguistics, the philosophy of cognitive science, and computerized education.
for Nuel Belnap, who is responsible for anything he likes about this book
Contents

Preface
Introduction: What Is Modal Logic?

1
The System K: A Foundation for Modal Logic
1.1 The Language of Propositional Modal Logic
1.2 Natural Deduction Rules for Propositional Logic: PL
1.3 Derivable Rules of PL
1.4 Natural Deduction Rules for System K
1.5 A Derivable Rule for \Box
1.6 Horizontal Notation for Natural Deduction Rules
1.7 Necessitation and Distribution
1.8 General Necessitation
1.9 Summary of the Rules of K

2
Extensions of K
2.1 Modal or Alethic Logic
2.2 Duals
2.3 Deontic Logic
2.4 The Good Samaritan Paradox
2.5 Conflicts of Obligation and the Axiom (D)
2.6 Iteration of Obligation
2.7 Tense Logic
2.8 Locative Logic
2.9 Logics of Belief
2.10 Provability Logic

3
Basic Concepts of Intensional Semantics
3.1 Worlds and Intensions
3.2 Truth Conditions and Diagrams for \rightarrow and \bot

© Cambridge University Press
www.cambridge.org
Contents

3.3 Derived Truth Conditions and Diagrams for PL 61
3.4 Truth Conditions for □ 63
3.5 Truth Conditions for ◇ 66
3.6 Satisfiability, Counterexamples, and Validity 67
3.7 The Concepts of Soundness and Completeness 69
3.8 A Note on Intensions 70

4 Trees for K 72
4.1 Checking for K-Validity with Trees 72
4.2 Showing K-Invalidity with Trees 81
4.3 Summary of Tree Rules for K 91

5 The Accessibility Relation 93
5.1 Conditions Appropriate for Tense Logic 93
5.2 Semantics for Tense Logics 99
5.3 Semantics for Modal (Alethic) Logics 104
5.4 Semantics for Deontic Logics 108
5.5 Semantics for Locative Logics 111
5.6 Relevance Logics and Conditional Logics 112
5.7 Summary of Axioms and Their Conditions on Frames 115

6 Trees for Extensions of K 116
6.1 Trees for Reflexive Frames: M-Trees 116
6.2 Trees for Transitive Frames: 4-Trees 121
6.3 Trees for Symmetrical Frames: B-Trees 123
6.4 Trees for Euclidean Frames: 5-Trees 129
6.5 Trees for Serial Frames: D-Trees 133
6.6 Trees for Unique Frames: CD-Trees 135

7 Converting Trees to Proofs 136
7.1 Converting Trees to Proofs in K 136
7.2 Converting Trees that Contain Defined Notation into Proofs 147
7.3 Converting M-Trees into Proofs 149
7.4 Converting D-Trees into Proofs 151
7.5 Converting 4-Trees into Proofs 152
7.6 Converting B-Trees into Proofs 154
7.7 Converting 5-Trees into Proofs 159
7.8 Using Conversion Strategies to Find Difficult Proofs 163
7.9 Converting CD-Trees into Proofs in CD and DCD 164
7.10 A Formal Proof that Trees Can Be Converted into Proofs 165

8 Adequacy of Propositional Modal Logics 172
8.1 Soundness of K 172
8.2 Soundness of Systems Stronger than K 180
8.3 The Tree Model Theorem 182
Contents

8.4 Completeness of Many Modal Logics 188
8.5 Decision Procedures 189
8.6 Automatic Proofs 191
8.7 Adequacy of Trees 191
8.8 Properties of Frames that Correspond to No Axioms 192

9 Completeness Using Canonical Models 195
9.1 The Lindenbaum Lemma 195
9.2 The Canonical Model 198
9.3 The Completeness of Modal Logics Based on K 201
9.4 The Equivalence of PL+(GN) and K 210

10 Axioms and Their Corresponding Conditions on R 211
10.1 The General Axiom (G) 211
10.2 Adequacy of Systems Based on (G) 215

11 Relations between the Modal Logics 221
11.1 Showing Systems Are Equivalent 222
11.2 Showing One System Is Weaker than Another 224

12 Systems for Quantified Modal Logic 228
12.1 Languages for Quantified Modal Logic 228
12.2 A Classical System for Quantifiers 231
12.3 Identity in Modal Logic 234
12.4 The Problem of Nondenoting Terms in Classical Logic 239
12.5 FL: A System of Free Logic 242
12.6 fS: A Basic Quantified Modal Logic 245
12.7 The Barcan Formulas 248
12.8 Constant and Varying Domains of Quantification 250
12.9 A Classicist’s Defense of Constant Domains 254
12.10 The Prospects for Classical Systems with Varying Domains 256
12.11 Rigid and Nonrigid Terms 260
12.12 Eliminating the Existence Predicate 262
12.13 Summary of Systems, Axioms, and Rules 263

13 Semantics for Quantified Modal Logics 265
13.1 Truth Value Semantics with the Substitution Interpretation 265
13.2 Semantics for Terms, Predicates, and Identity 268
13.3 Strong Versus Contingent Identity 270
13.4 Rigid and Nonrigid Terms 276
13.5 The Objectual Interpretation 278
13.6 Universal Instantiation on the Objectual Interpretation 281
13.7 The Conceptual Interpretation 286
Contents

13.8 The Intensional Interpretation 288
13.9 Strengthening Intensional Interpretation Models 293
13.10 Relationships with Systems in the Literature 294
13.11 Summary of Systems and Truth Conditions 300

14 Trees for Quantified Modal Logic 303
14.1 Tree Rules for Quantifiers 303
14.2 Tree Rules for Identity 307
14.3 Infinite Trees 309
14.4 Trees for Quantified Modal Logic 310
14.5 Converting Trees into Proofs 314
14.6 Trees for Systems that Include Domain Rules 319
14.7 Converting Trees into Proofs in Stronger Systems 320
14.8 Summary of the Tree Rules 321

15 The Adequacy of Quantified Modal Logics 323
15.1 Preliminaries: Some Replacement Theorems 324
15.2 Soundness for the Intensional Interpretation 326
15.3 Soundness for Systems with Domain Rules 329
15.4 Expanding Truth Value (tS) to Substitution (sS) Models 332
15.5 Expanding Substitution (sS) to Intensional (iS) Models 337
15.6 An Intensional Treatment of the Objectual Interpretation 339
15.7 Transfer Theorems for Intensional and Substitution Models 342
15.8 A Transfer Theorem for the Objectual Interpretation 347
15.9 Soundness for the Substitution Interpretation 348
15.10 Soundness for the Objectual Interpretation 349
15.11 Systems with Nonrigid Terms 350
15.12 Appendix: Proof of the Replacement Theorems 351

16 Completeness of Quantified Modal Logics Using Trees 356
16.1 The Quantified Tree Model Theorem 356
16.2 Completeness for Truth Value Models 361
16.3 Completeness for Intensional and Substitution Models 361
16.4 Completeness for Objectual Models 362
16.5 The Adequacy of Trees 364

17 Completeness Using Canonical Models 365
17.1 How Quantifiers Complicate Completeness Proofs 365
17.2 Limitations on the Completeness Results 368
17.3 The Saturated Set Lemma 370
17.4 Completeness for Truth Value Models 373
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5</td>
<td>Completeness for Systems with Rigid Constants</td>
<td>377</td>
</tr>
<tr>
<td>17.6</td>
<td>Completeness for Systems with Nonrigid Terms</td>
<td>379</td>
</tr>
<tr>
<td>17.7</td>
<td>Completeness for Intensional and Substitution Models</td>
<td>382</td>
</tr>
<tr>
<td>17.8</td>
<td>Completeness for the Objectual Interpretation</td>
<td>383</td>
</tr>
<tr>
<td>18</td>
<td>Descriptions</td>
<td>385</td>
</tr>
<tr>
<td>18.1</td>
<td>Russell’s Theory of Descriptions</td>
<td>385</td>
</tr>
<tr>
<td>18.2</td>
<td>Applying Russell’s Method to Philosophical Puzzles</td>
<td>388</td>
</tr>
<tr>
<td>18.3</td>
<td>Scope in Russell’s Theory of Descriptions</td>
<td>390</td>
</tr>
<tr>
<td>18.4</td>
<td>Motives for an Alternative Treatment of Descriptions</td>
<td>392</td>
</tr>
<tr>
<td>18.5</td>
<td>Syntax for Modal Description Theory</td>
<td>394</td>
</tr>
<tr>
<td>18.6</td>
<td>Rules for Modal Description Theory: The System !S</td>
<td>396</td>
</tr>
<tr>
<td>18.7</td>
<td>Semantics for !S</td>
<td>400</td>
</tr>
<tr>
<td>18.8</td>
<td>Trees for !S</td>
<td>402</td>
</tr>
<tr>
<td>18.9</td>
<td>Adequacy of !S</td>
<td>403</td>
</tr>
<tr>
<td>18.10</td>
<td>How !S Resolves the Philosophical Puzzles</td>
<td>407</td>
</tr>
<tr>
<td>19</td>
<td>Lambda Abstraction</td>
<td>409</td>
</tr>
<tr>
<td>19.1</td>
<td>De Re and De Dicto</td>
<td>409</td>
</tr>
<tr>
<td>19.2</td>
<td>Identity and the De Re–De Dicto Distinction</td>
<td>413</td>
</tr>
<tr>
<td>19.3</td>
<td>Principles for Abstraction: The System (\lambda S)</td>
<td>415</td>
</tr>
<tr>
<td>19.4</td>
<td>Syntax and Semantics for (\lambda S)</td>
<td>416</td>
</tr>
<tr>
<td>19.5</td>
<td>The Adequacy of (\lambda S)</td>
<td>422</td>
</tr>
<tr>
<td>19.6</td>
<td>Quantifying In</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>Answers to Selected Exercises</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>Bibliography of Works Cited</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>449</td>
</tr>
</tbody>
</table>
The main purpose of this book is to help bridge a gap in the landscape of modal logic. A great deal is known about modal systems based on propositional logic. However, these logics do not have the expressive resources to handle the structure of most philosophical argumentation. If modal logics are to be useful to philosophy, it is crucial that they include quantifiers and identity. The problem is that quantified modal logic is not as well developed, and it is difficult for the student of philosophy who may lack mathematical training to develop mastery of what is known. Philosophical worries about whether quantification is coherent or advisable in certain modal settings partly explains this lack of attention. If one takes such objections seriously, they exert pressure on the logician to either eliminate modality altogether or eliminate the allegedly undesirable forms of quantification.

Even if one lays those philosophical worries aside, serious technical problems must still be faced. There is a rich menu of choices for formulating the semantics of quantified modal languages, and the completeness problem for some of these systems is difficult or unresolved. The philosophy of this book is that this variety is to be explored rather than shunned. We hope to demonstrate that modal logic with quantifiers can be simplified so that it is manageable, even teachable. Some of the simplifications depend on the foundations – in the way the systems for propositional modal logic are developed. Some ideas that were designed to make life easier when quantifiers are introduced are also genuinely helpful even for those who will study only the propositional systems. So this book can serve a dual purpose. It is, I hope, a simple and accessible introduction to propositional modal logic for students who have had a first course
in formal logic (preferably one that covers natural deduction rules and truth trees). I hope, however, that students who had planned to use this book to learn only propositional modal logic will be inspired to move on to study quantification as well.

A principle that guided the creation of this book is the conviction that visualization is one of the most powerful tools for organizing one’s thoughts. So the book depends heavily on diagrams of various kinds. One of the central innovations is to combine the method of Haus diagrams (to represent Kripke’s accessibility relation) with the truth tree method. This provides an easy and revealing method for checking validity in a wide variety of modal logics. My students have found the diagrams both easy to learn and fun to use. I urge readers of this book to take advantage of them.

The tree diagrams are also the centerpiece for a novel technique for proving completeness – one that is more concrete and easier to learn than the method of maximally consistent sets, and one that is extremely easy to extend to the quantifiers. On the other hand, the standard method of maximally consistent sets has its own advantages. It applies to more systems, and many will consider it an indispensable part of anyone’s education in modal logic. So this book covers both methods, and it is organized so that one may easily choose to study one, the other, or both.

Three different ways of providing semantics for the quantifiers are introduced in this book: the substitution interpretation, the intensional interpretation, and the objectual interpretation. Though some have faulted the substitution interpretation on philosophical grounds, its simplicity prompts its use as a centerpiece for technical results. Those who would like a quick and painless entry to the completeness problem may read the sections on the substitution interpretation alone. The intensional interpretation, where one quantifies over individual concepts, is included because it is the most general approach for dealing with the quantifiers. Furthermore, its strong kinships with the substitution interpretation provide a relatively easy transition to its formal results. The objectual interpretation is treated here as a special case of the intensional interpretation. This helps provide new insights into how best to formalize systems for the objectual interpretation.

The student should treat this book more as a collection of things to do than as something to read. Exercises in this book are found embedded throughout the text rather than at the end of each chapter, as is the more common practice. This signals the importance of doing exercises as soon
as possible after the relevant material has been introduced. Think of the
text between the exercises as a preparation for activities that are the
foundation for true understanding. Answers to exercises marked with a
star (*) are found at the end of the book. Many of the exercises also
include hints. The best way to master this material is to struggle through
the exercises on your own as far as humanly possible. Turn to the hints or
answers only when you are desperate.

Many people should be acknowledged for their contributions to this
book. First of all, I would like to thank my wife, Connie Garson, who has
unfailingly and lovingly supported all of my odd enthusiasms. Second, I
would like to thank my students, who have struggled though the many
drafts of this book over the years. I have learned a great deal more from
them than any of them has learned from me. Unfortunately, I have lost
track of the names of many who helped me make numerous important
improvements, so I apologize to them. But I do remember by name the
contributions of Brandy Burfield, Carl Feierabend, Curtis Haaga, James
Hulgan, Alistair Isaac, JoBeth Jordon, Raymond Kim, Kris Rhodes, Jay
Schroeder, Steve Todd, Andy Tristan, Mako Voelkel, and especially Julian
Zinn. Third, I am grateful to Johnathan Raymon, who helped me with the
diagrams. Finally, I would like to thank Cambridge University Press for
taking an interest in this project and for the excellent comments of the
anonymous readers, some of whom headed off embarrassing errors.