Environmental Biology

Environmental Biology offers a fresh, problem-solving treatment of the topic for students requiring a biology background before further study in environmental science, sustainable development or environmental engineering. The text begins with an environmental theme that carries throughout, using three major case studies with a regional focus. Key foundational knowledge in biology is introduced and developed as the text progresses, with students encouraged to integrate their accumulating learning to reach solutions. A comprehensive coverage of scientific method, including field experimentation and field techniques, is an important part of the approach. While emphasising the environmental theme, the book introduces all facets of the discipline of biology, including cell biology, evolution, ecology, conservation and restoration.

With over 500 line drawings, diagrams and photos throughout, including full-colour sections, each chapter includes:

- chapter summaries
- comprehension questions
- activities that reinforce learning and encourage scientific analysis
- topics for debate with other students
- lists of further reading.

An online Instructors' Resource offers multiple-choice questions, 'Test your knowledge' solutions, video footage, a full repository of text-based and supplementary photos, and a vast list of relevant journal articles.

Mike Calver is Associate Professor in the School of Biological Sciences and Biotechnology at Murdoch University.

Alan Lymbery is Associate Professor of Parasitology in the School of Veterinary and Biomedical Sciences at Murdoch University.

Jen McComb is Emeritus Professor in the School of Biological Sciences and Biotechnology at Murdoch University.

Mike Bamford is Consulting Ecologist at Bamford Consulting.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of contributors</td>
<td>xii</td>
</tr>
<tr>
<td>Preface</td>
<td>xiv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xv</td>
</tr>
<tr>
<td>Theme 1 What is environmental biology?</td>
<td></td>
</tr>
<tr>
<td>1 Environmental biology and our time</td>
<td>1</td>
</tr>
<tr>
<td>Setting the scene</td>
<td>2</td>
</tr>
<tr>
<td>Humans and environmental problems</td>
<td>3</td>
</tr>
<tr>
<td>The human animal</td>
<td>4</td>
</tr>
<tr>
<td>Human cultural development</td>
<td>6</td>
</tr>
<tr>
<td>Studying human impacts</td>
<td>12</td>
</tr>
<tr>
<td>Chapter review</td>
<td>19</td>
</tr>
<tr>
<td>Theme 2 The scientific method and the unifying theories of modern biology</td>
<td>21</td>
</tr>
<tr>
<td>2 Science and the environment</td>
<td>23</td>
</tr>
<tr>
<td>The mystery of the flying fox populations</td>
<td>23</td>
</tr>
<tr>
<td>How does science work?</td>
<td>23</td>
</tr>
<tr>
<td>Applying science – the hypothesis-testing approach</td>
<td>25</td>
</tr>
<tr>
<td>Applying science – the information-theoretic and Bayesian approaches</td>
<td>36</td>
</tr>
<tr>
<td>Publishing the findings</td>
<td>39</td>
</tr>
<tr>
<td>Chapter review</td>
<td>40</td>
</tr>
<tr>
<td>3 Cell theory I – the cellular basis of life</td>
<td>43</td>
</tr>
<tr>
<td>Poison the cell, poison the animal</td>
<td>43</td>
</tr>
<tr>
<td>What is life?</td>
<td>44</td>
</tr>
<tr>
<td>Development and precepts of the cell theory</td>
<td>45</td>
</tr>
<tr>
<td>Cell size</td>
<td>46</td>
</tr>
<tr>
<td>Prokaryotic and eukaryotic cells</td>
<td>48</td>
</tr>
<tr>
<td>Functions of eukaryotic cell organelles</td>
<td>52</td>
</tr>
<tr>
<td>Cell division</td>
<td>61</td>
</tr>
<tr>
<td>Chapter review</td>
<td>62</td>
</tr>
<tr>
<td>4 Cell theory II – cellular processes and the environment</td>
<td>65</td>
</tr>
<tr>
<td>Power to the people</td>
<td>65</td>
</tr>
<tr>
<td>Uses and sources of energy for organisms</td>
<td>66</td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>68</td>
</tr>
<tr>
<td>Respiration</td>
<td>76</td>
</tr>
<tr>
<td>Energy flow in the biosphere</td>
<td>81</td>
</tr>
<tr>
<td>Chapter review</td>
<td>85</td>
</tr>
</tbody>
</table>
Contents

5 Cell theory III – the cell cycle
- Is extinction really forever? 88
- What is the hereditary material and how does it code messages? 89
- How does the hereditary material control cell function? 94
- How is the hereditary material copied and distributed through cell division? 100
- How is an understanding of genetic diversity used in environmental biology? 107
- Chapter review 110

6 Evolutionary theory – the origin and fate of genetic variation
- The genetic challenges of captive breeding 113
- Evolution 114
- The origin of genetic variation 117
- Microevolution 123
- Speciation 129
- From microevolution to macroevolution 132
- Chapter review 135

7 The history of life on Earth
- A very distinctive biota 138
- A deep-time perspective 139
- Beginnings 144
- Multicellular life 145
- First life on land 146
- Marine animal life radiates 147
- Conquest of the land 147
- Deep freeze and the world’s greatest extinction event 149
- Emerging modern lineages 150
- A drier, colder and more familiar world 150
- The age of technological expansion 154
- Chapter review 157

Theme 3 Applying scientific method – understanding biodiversity

8 Coping with cornucopia – classifying and naming biodiversity
- Conserving the unknown 160
- Classifying biodiversity 161
- Phylogenetic reconstruction 167
9 Microscopic diversity – the prokaryotes and viruses 182
Some like it hot 182
Identification, structural features and classification of prokaryotes 183
Prokaryote metabolism 187
Prokaryote reproduction 188
Environmental influences on prokaryote growth 192
Viruses – at the boundaries of life 193
The environmental importance of prokaryotes and viruses 197
Chapter review 200

10 Mysterious diversity – the protists (including the fungi) 202
The biological bulldozer 202
Is there a kingdom Protista? 203
Supergroup Amoebozoa 208
Supergroup Rhizaria 209
Supergroup Archaeplastida (glaucophytes, red algae and green algae) 209
Supergroup Chromalveolata (diatoms, brown algae and water moulds; dinoflagellates, ciliates and apicomplexans) 212
Supergroup Excavata (euglenids and trypanosomes) 218
Supergroup Opisthokonta (choanomonads) 218
Is there a kingdom Fungi? 219
Chapter review 226

11 Plant diversity I – the greening of the land 228
The plant dinosaur 228
Plants on the land 229
Seedless plants (non-vascular) 232
Seedless plants (vascular) 237
Seed plants (vascular, non-flowering) 242
Chapter review 251

12 Plant diversity II – the greening of the land 253
The end of Eden – extinctions in the Australian flora 253
Phylum Anthophyta – flowering plants dominate the land 254
Contents

Angiosperm architecture – the winning plan for land plants 257
Structures for photosynthesis 268
Internal transport 270
Reproduction and dispersal 273
Chapter review 282

13 Life on the move I – introducing animal diversity 286
All creatures great and small 286
What is an animal? 287
Influence of the environment 289
Influence of animal lifestyle 294
Influence of animal size 297
Animal body plans and classification 299
Chapter review 302

14 Life on the move II – the spineless majority 304
Invertebrates – out of sight, out of mind 304
Phylum Porifera – the sponges 305
Phylum Cnidaria – the jellyfish and their relatives 306
Phylum Platyhelminthes – the flatworms 310
Phylum Nematoda – the roundworms 315
Phylum Annelida – the segmented worms 318
Phylum Arthropoda – the joint-legged animals 321
Phylum Mollusca – the snails and their relatives 324
Phylum Echinodermata – the sea stars and their relatives 327
Conservation of invertebrates 330
Chapter review 332

15 Life on the move III – vertebrates and other chordates 335
The hoax that wasn’t 335
A small but significant group 336
Milestones in vertebrate evolution 338
An overview of vertebrates: living on water, on land and in the air 342
Conservation of Australia’s vertebrates 356
Chapter review 359

Theme 4 Applying scientific method – biodiversity and the environment 361

16 Boom and bust – population ecology 363
The bettong, the fox and the rabbit 363
What is population ecology? 364
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Living together – communities and ecosystems</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>Along the dingo fence</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>Characteristics of biological communities</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>Interactions in communities</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>From community to ecosystem</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Response to disturbance – succession and resilience in communities</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>Human-modified ecosystems</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>From ecosystem to biosphere</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Declining Australian ecosystems</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Chapter review</td>
<td>407</td>
</tr>
<tr>
<td>18</td>
<td>Marine habitats</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Journey to the bottom of the world</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Physical features of the oceans</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>Major marine habitats</td>
<td>417</td>
</tr>
<tr>
<td></td>
<td>Marine producers and marine communities</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>Chapter review</td>
<td>429</td>
</tr>
<tr>
<td>19</td>
<td>Marine lifestyles</td>
<td>431</td>
</tr>
<tr>
<td></td>
<td>The hitchhiker’s guide to the oceans</td>
<td>431</td>
</tr>
<tr>
<td></td>
<td>Temperature regulation</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>Maintaining water balance and removing liquid waste</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>Food intake and removing solid wastes</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>Reproduction and dispersal</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>Respiration</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>Chapter review</td>
<td>449</td>
</tr>
<tr>
<td>20</td>
<td>Inland aquatic environments I – wetland diversity and physical and chemical processes</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Trouble in Kakadu</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>The diversity of inland aquatic systems</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Environmental factors</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>Chapter review</td>
<td>478</td>
</tr>
<tr>
<td>21</td>
<td>Inland aquatic environments II – the ecology of lentic and lotic waters</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>Created wetlands</td>
<td>481</td>
</tr>
</tbody>
</table>
The importance of aquatic ecosystems 482
The ecology of lentic environments (lakes and wetlands) 482
The ecology of lotic environments (rivers and streams) 492
Chapter review 498

22 Terrestrial habitats 501
Earth, rain and fire – a trinity of the Australian landscape 501
Patterns of life on land 502
The climate 502
Soils 504
Evolutionary history 506
Biomes 508
Chapter review 517

23 Terrestrial lifestyles 519
Life on the rocks 519
Living on land 520
Adaptations to cold environments 522
Adaptations to hot, dry environments 527
Adaptations to low nutrients 529
Adaptations to soil toxins 533
Chapter review 535

Theme 5 The future – applying scientific method to conserving biodiversity and restoring degraded environments 537

24 The science of conservation biology 538
Rainbows in the swamp 538
What is conservation biology? 539
Conserving populations and species 539
Conserving ecological communities 548
Chapter review 556

25 Cultural conservation biology 559
The case of the Pedder galaxias 559
Conservation biology and society 560
The cultural nature of conservation biology 560
Why should human cultures conserve biological diversity? 561
The ‘who’ of conservation biology actions 565
Recovery and threat abatement planning for species and communities 574
Chapter review 577
26 Redressing the problem – environmental restoration

Gondwanalink and Atherton to the Alps 579
What is environmental restoration and why is it necessary? 580
Natural and human-induced disturbance of ecosystems 581
Key steps in environmental restoration 583
Repairing damaged primary processes 591
Directing vegetation change 591
Fauna and restoration 592
Landscape-scale restoration 592
Working with the community 595
Policy instruments 596
Conservation and restoration 598
Chapter review 599

27 A natural legacy

The case of the toxic moths 601
Revisiting the case studies 603
Two encounters with the Australian bush 608
Chapter review 617

Glossary 619
Index 653
Contributors

Mike Bamford is Consulting Ecologist at Bamford Consulting

Mike Calver is Associate Professor in the School of Biological Sciences and Biotechnology at Murdoch University

Alan Lymbery is Associate Professor of Parasitology in the School of Veterinary and Biomedical Sciences at Murdoch University

Jen McComb is Emeritus Professor in the School of Biological Sciences and Biotechnology at Murdoch University

David Ayre is Professor in the School of Biological Sciences at the University of Wollongong.

Barbara Bowen is Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Stuart Bradley is Professor and Dean of the Faculty of Sustainability, Environmental and Life Sciences at Murdoch University.

Treena Burgess is Postdoctoral Fellow in the School of Biological Sciences and Biotechnology at Murdoch University.

Jane Chambers is Senior Lecturer in the School of Environmental Science at Murdoch University.

Mathew Crowther is Lecturer in the School of Biological Sciences at the University of Sydney.

Jenny Davis is Professor in the School of Biological Sciences at Monash University

Bernie Dell is Professor in the School of Biological Sciences and Biotechnology at Murdoch University.

Chris Dickman is Professor in the School of Biological Sciences at the University of Sydney.

Mark Garkaklis is Adjunct Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Howard Gill is Senior Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Richard Hobbs is Professor in the School of Plant Biology at the University of Western Australia

Stephen Hopper is Director, Royal Botanic Gardens Kew, United Kingdom
Pierre Horwitz is Associate Professor in the School of Natural Sciences at Edith Cowan University.

Carolyn Jones is Senior Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Annette Koenders is Senior Lecturer in the School of Natural Sciences at Edith Cowan University.

Philip Ladd is Senior Lecturer in the School of Environmental Science at Murdoch University.

Dan Lunney is Principal Research Scientist in the Department of Environment and Climate Change New South Wales.

Arthur McComb is Emeritus Professor in the School of Environmental Science at Murdoch University.

Graham O'Hara is Associate Professor in the School of Biological Sciences and Biotechnology at Murdoch University.

Eric Paling is Associate Professor in the School of Environmental Science at Murdoch University.

Harry Recher is Emeritus Professor in the School of Natural Sciences at Edith Cowan University.

Luke Twomey is Principal Scientist of the Swan River Trust, Western Australia.

Mike van Keulen is Senior Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Grant Wardell-Johnson is Associate Professor in the School of Environmental Biology at Curtin University of Technology.
Preface

There are many excellent introductory biology textbooks available, so why write another? The answer lies partly in the rapid expansion of modern biology and partly in the needs and aspirations of modern students.

The second half of the 20th century and the early 21st century have seen such major developments as the unravelling of the structure of DNA, the complete cataloguing of the genome of humans and other species, and the first successful cloning. These developments are reflected in university biology curricula, which offer new units and courses in subjects such as molecular genetics and biotechnology and a much greater prominence for molecular biology in introductory textbooks. Simultaneously, other biologists have noted with concern the impacts of climate change, increasing human populations and changing technologies on natural environments and other species. They note that the rate of extinction in species at present is well above the background extinction rate shown in the fossil record, suggesting that the world is in a period of human-caused mass extinction that is reducing our biological heritage. These realisations are reflected in the curricula too, with new courses and units in conservation biology and restoration biology, as well as chapters on conservation in introductory textbooks.

Students majoring in biology at university need a thorough grounding in all these new areas as well as the more traditional aspects of the discipline. They are well served by existing textbooks, but many non-majors lack the space in their crowded timetables to cover all the topics in such detail. Instead, they need to emphasise the biology of direct relevance to their major field of study. Unfortunately, for many students it may not be clear how basic biology is relevant to their varying majors. This has long been recognised in biomedical education, where biology textbooks for physicians, dentists and other health professionals take an explicit human emphasis in their examples. Similarly, we believe that there is a need for a text with an environmental emphasis for those students needing a semester of biology as background for their specialist studies in environmental science, conservation biology, sustainable development, environmental engineering and related fields.

Environmental Biology is our attempt to meet that need. It begins with an account of the human species and our impact on the environment, before developing the biological knowledge and skills necessary to solve environmental problems through a consideration of scientific method (including the major unifying theories of evolution and the cell), biodiversity and the interactions of organisms with each other and with the physical environment. The final chapters integrate this background material in the applied disciplines of conservation biology and environmental restoration. The specialist chapter authors are all experienced researchers and accomplished teachers, and they illustrate their points with theoretical and practical environmental examples. We hope that this approach will enable students with interests in environmental science or sustainable development to see immediately the relevance of biology to their major discipline and integrate biological knowledge and skills into solving pressing environmental problems.
Acknowledgements

A project such as this is possible only because of the generosity, assistance and hard work of many people. We are grateful to the chapter authors who have endured our questioning and nagging and accepted with good grace the editorial adjustments necessary to ensure a uniform style across all chapters. Many also kindly provided excellent photographs to illustrate their chapters.

Individual copyright holders are acknowledged in the text for permission to include figures, tables and quotes, but we would particularly like to thank Rodney Armistead, Richard Calver, Jane Chambers, Jenny Davis, Bernie Dell, Bill Dunstan, Hugh Finn, Ray Froend, Alex George, Richard Hobbs, John Huisman, N. Insalud, Manfred Jusaitis, Philip Ladd, Dan Lunney, Jenny Lawrence, David Macey, Neville Marchant, John Martin, Brett Mawbey, Ron Mawbey, Martina Muller, Jim Negus, Eric Paling, H. Patterson, John Plaza, Michael Shane, Laurie Twigg, Grant Wardell-Johnston, Maria Waters and Robert Whyte for generously providing photographs from their own collections. Jiri and Marie Lochman quickly and efficiently met our urgent requests for photographs to cover gaps in our requirements. Belinda Cale drew most of the original illustrations and adaptations, impressing everyone with her knack for turning rough conceptions into polished images.

We wore out many people at Cambridge University Press with the demands and mistakes that only novice editors can make. Thuong Du, Zoe Hamilton, Jill Henry, Karen Hildebrandt, Jodie Howell, Debbie Lee and Joy Window all gave valued advice and encouragement. Finally, we thank our families, friends and colleagues for their boundless patience during the book’s long gestation.

Every effort has been made to trace and acknowledge copyright. The publishers apologise for any accidental infringement and welcome information that would rectify any error or omission in subsequent editions.