Environmental Biology

Environmental Biology offers a fresh, problem-solving treatment of the topic for students requiring a biology background before further study in environmental science, sustainable development or environmental engineering.

The text begins with an environmental theme that carries throughout, using three major case studies with a regional focus. Key foundational knowledge in biology is introduced and developed as the text progresses, with students encouraged to integrate their accumulating learning to reach solutions. A comprehensive coverage of scientific method, including field experimentation and field techniques, is an important part of the approach. While emphasising the environmental theme, the book introduces all facets of the discipline of biology, including cell biology, evolution, ecology, conservation and restoration.

With over 500 line drawings, diagrams and photos throughout, including full-colour sections, each chapter includes:

- chapter summaries
- comprehension questions
- activities that reinforce learning and encourage scientific analysis
- topics for debate with other students
- lists of further reading.

An online Instructors' Resource offers multiple-choice questions, 'Test your knowledge' solutions, video footage, a full repository of text-based and supplementary photos, and a vast list of relevant journal articles.

Mike Calver is Associate Professor in the School of Biological Sciences and Biotechnology at Murdoch University.

Alan Lymbery is Associate Professor of Parasitology in the School of Veterinary and Biomedical Sciences at Murdoch University.

Jen McComb is Emeritus Professor in the School of Biological Sciences and Biotechnology at Murdoch University.

Mike Bamford is Consulting Ecologist at Bamford Consulting.

Environmental Biology

Edited by Mike Calver Alan Lymbery Jen McComb Mike Bamford

Illustrated by Belinda Cale and Mike Bamford

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press 477 Williamstown Road, Port Melbourne, VIC 3207, Australia

www.cambridge.edu.au Information on this title: www.cambridge.org/9780521679824

© Michael Calver, Alan Lymbery, Jennifer McComb & Michael Bamford 2009

First published 2009

Designed by Pier Vido Typeset by Aptara Corp Printed in China by Printplus

National Library of Australia Cataloguing in Publication data

Calver, Michael Environmental Biology / Michael Calver ... [et al.] 9780521679824 (pbk.) Includes index. Biology Environment Ecology 570 978-0-521-67982-4 paperback

Reproduction and Communication for educational purposes

The Australian *Copyright Act 1968* (the Act) allows a maximum of one chapter or 10% of the pages of this publication, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that the educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act.

For details of the CAL licence for educational institutions contact:

Copyright Agency Limited Level 15, 233 Castlereagh Street Sydney NSW 2000 Telephone: (02) 9394 7600 Facsimile: (02) 9394 7601 Email: info@copyright.com.au

Reproduction and Communication for other purposes

Except as permitted under the Act (for example a fair dealing for the purposes of study, research, criticism or review) no part of this publication may be reproduced, stored in a retrieval system, communicated or transmitted in any form or by any means without prior written permission. All inquiries should be made to the publisher at the address above.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables and other factual information given in this work are correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

V

Contents

	List of contributors	xii
	Preface	xiv
	Acknowledgements	XV
Theme 1	What is environmental biology?	1
1	Environmental biology and our time	2
	Setting the scene	2
	Humans and environmental problems	3
	The human animal	4
	Human cultural development	6
	Studying human impacts	12
	Chapter review	19
Theme 2	The scientific method and the unifying theories	
	of modern biology	21
2	Science and the environment	23
	The mystery of the flying fox populations	23
	How does science work?	23
	Applying science – the hypothesis-testing approach	25
	Applying science – the information-theoretic and	
	Bayesian approaches	36
	Publishing the findings	39
	Chapter review	40
3	Cell theory I – the cellular basis of life	43
	Poison the cell, poison the animal	43
	What is life?	44
	Development and precepts of the cell theory	45
	Cell size	46
	Prokaryotic and eukaryotic cells	48
	Functions of eukaryotic cell organelles	52
	Cell division	61
	Chapter review	62
4	Cell theory II – cellular processes and the environment	65
	Power to the people	65
	Uses and sources of energy for organisms	66
	Photosynthesis	68
	Respiration	76
	Energy flow in the biosphere	81
	Chapter review	85

vi __

Contents

5	Cell theory III – the cell cycle	88
	Is extinction really forever?	88
	What is the hereditary material and how does it code messages?	89
	How does the hereditary material control cell function?	94
	How is the hereditary material copied and distributed	
	through cell division?	100
	How is an understanding of genetic diversity used in	
	environmental biology?	107
	Chapter review	110
6	Evolutionary theory – the origin and fate of genetic variation	113
	The genetic challenges of captive breeding	113
	Evolution	114
	The origin of genetic variation	117
	Microevolution	123
	Speciation	129
	From microevolution to macroevolution	132
	Chapter review	135
7	The history of life on Earth	138
	A very distinctive biota	138
	A deep-time perspective	139
	Beginnings	144
	Multicellular life	145
	First life on land	146
	Marine animal life radiates	147
	Conquest of the land	147
	Deep freeze and the world's greatest extinction event	149
	Emerging modern lineages	150
	A drier, colder and more familiar world	150
	The age of technological expansion	154
	Chapter review	157
Theme 3	Applying scientific method – understanding	
		159
8	Coping with cornucopia – classifying and naming	
	biodiversity	160
	Conserving the unknown	160
	Classifying biodiversity	161

Phylogenetic reconstruction

167

Contents	

	From phylogenetic reconstruction to classification	171
	Naming biodiversity	173
	Identifying taxa	175
	Kingdoms of life	178
	Chapter review	180
9	Microscopic diversity – the prokaryotes and viruses	182
	Some like it hot	182
	Identification, structural features and classification	
	of prokaryotes	183
	Prokaryote metabolism	187
	Prokaryote reproduction	188
	Environmental influences on prokaryote growth	192
	Viruses – at the boundaries of life	193
	The environmental importance of prokaryotes and viruses	197
	Chapter review	200
10	Mysterious diversity – the protists (including the fungi)	202
	The biological bulldozer	202
	Is there a kingdom Protista?	203
	Supergroup Amoebozoa	208
	Supergroup Rhizaria	209
	Supergroup Archaeplastida (glaucophytes, red algae	
	and green algae)	209
	Supergroup Chromalveolata (diatoms, brown algae and water	
	moulds; dinoflagellates, ciliates and apicomplexans)	212
	Supergroup Excavata (euglenids and trypanosomes)	218
	Supergroup Opisthokonta (choanomonads)	218
	Is there a kingdom Fungi?	219
	Chapter review	226
11	Plant diversity I – the greening of the land	228
	The plant dinosaur	228
	Plants on the land	229
	Seedless plants (non-vascular)	232
	Seedless plants (vascular)	237
	Seed plants (vascular, non-flowering)	242
	Chapter review	251
12	Plant diversity II – the greening of the land	253
	The end of Eden – extinctions in the Australian flora	253
	Phylum Anthophyta – flowering plants dominate the land	254

viii _

Contents

	Angiosperm architecture – the winning plan for land plants	257
	Structures for photosynthesis	268
	Internal transport	270
	Reproduction and dispersal	273
	Chapter review	282
13	Life on the move I – introducing animal diversity	286
	All creatures great and small	286
	What is an animal?	287
	Influence of the environment	289
	Influence of animal lifestyle	294
	Influence of animal size	297
	Animal body plans and classification	299
	Chapter review	302
14	Life on the move II – the spineless majority	304
	Invertebrates – out of sight, out of mind	304
	Phylum Porifera – the sponges	305
	Phylum Cnidaria – the jellyfish and their relatives	306
	Phylum Platyhelminthes – the flatworms	310
	Phylum Nematoda – the roundworms	315
	Phylum Annelida – the segmented worms	318
	Phylum Arthropoda – the joint-legged animals	321
	Phylum Mollusca – the snails and their relatives	324
	Phylum Echinodermata – the sea stars and their relatives	327
	Conservation of invertebrates	330
	Chapter review	332
15	Life on the move III – vertebrates and other chordates	335
	The hoax that wasn't	335
	A small but significant group	336
	Milestones in vertebrate evolution	338
	An overview of vertebrates: living on water, on land and in the air	342
	Conservation of Australia's vertebrates	356
	Chapter review	359
Theme 4	Applying scientific method – biodiversity	
	and the environment	361
16	Boom and bust – population ecology	363
	The bettong, the fox and the rabbit	363

What is population ecology?

364

		Cor
	Properties of populations and how to study them	364
	What influences population growth?	376
	Applying population ecology	379
	Chapter review	382
17	Living together – communities and ecosystems	384
	Along the dingo fence	384
	Characteristics of biological communities	385
	Interactions in communities	389
	From community to ecosystem	393
	Response to disturbance – succession and resilience	0,0
	in communities	401
	Human-modified ecosystems	403
	From ecosystem to biosphere	405
	Declining Australian ecosystems	405
	Chapter review	407
18	Marine habitats	409
10	Journey to the bottom of the world	409
	Physical features of the oceans	410
	Major marine habitats	417
	Marine producers and marine communities	420
	Chapter review	429
19	Marine lifestyles	431
12	The hitchhiker's guide to the oceans	431
	Temperature regulation	432
	Maintaining water balance and removing liquid waste	433
	Food intake and removing solid wastes	437
	Reproduction and dispersal	438
	Respiration	445
	Chapter review	449
20	Inland aquatic environments I – wetland diversity	779
20	and physical and chemical processes	452
	Trouble in Kakadu	452
		453
	The diversity of inland aquatic systems Environmental factors	458
		478 478
21	Chapter review Inland aquatic environments II – the ecology of lentic	7/0
∠ I	and lotic waters	481
		48 1 481
	Created wetlands	4

x ___

Contents

	The importance of aquatic ecosystems	482
	The ecology of lentic environments (lakes and wetlands)	482
	The ecology of lotic environments (rivers and streams)	492
	Chapter review	498
22	Terrestrial habitats	501
	Earth, rain and fire – a trinity of the Australian landscape	501
	Patterns of life on land	502
	The climate	502
	Soils	504
	Evolutionary history	506
	Biomes	508
	Chapter review	517
23	Terrestrial lifestyles	519
	Life on the rocks	519
	Living on land	520
	Adaptations to cold environments	522
	Adaptations to hot, dry environments	527
	Adaptations to low nutrients	529
	Adaptations to soil toxins	533
	Chapter review	535
Theme 5	The future – applying scientific method to	
	conserving biodiversity and restoring	
	degraded environments	537
24	The science of conservation biology	538
24	Rainbows in the swamp	538
	What is conservation biology?	539
	Conserving populations and species	539
	Conserving ecological communities	548
	Chapter review	556
25	Cultural conservation biology	559
23	The case of the Pedder galaxias	559
	Conservation biology and society	560
	The cultural nature of conservation biology	560
	Why should human cultures conserve biological diversity?	561
		565
	The 'who' of conservation biology actions	202
	Recovery and threat abatement planning for species and communities	571
		574
	Chapter review	577

_ xi

26	Redressing the problem – environmental restoration	579
	Gondwanalink and Atherton to the Alps	579
	What is environmental restoration and why is it necessary?	580
	Natural and human-induced disturbance of ecosystems	581
	Key steps in environmental restoration	583
	Repairing damaged primary processes	591
	Directing vegetation change	591
	Fauna and restoration	592
	Landscape-scale restoration	592
	Working with the community	595
	Policy instruments	596
	Conservation and restoration	598
	Chapter review	599
27	A natural legacy	601
	The case of the toxic moths	601
	Revisiting the case studies	603
	Two encounters with the Australian bush	608
	Chapter review	617
	Glossary	619
	Index	653

xii

Contributors

Mike Bamford is Consulting Ecologist at Bamford Consulting

Mike Calver is Associate Professor in the School of Biological Sciences and Biotechnology at Murdoch University

Alan Lymbery is Associate Professor of Parasitology in the School of Veterinary and Biomedical Sciences at Murdoch University

Jen McComb is Emeritus Professor in the School of Biological Sciences and Biotechnology at Murdoch University

David Ayre is Professor in the School of Biological Sciences at the University of Wollongong.

Barbara Bowen is Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Stuart Bradley is Professor and Dean of the Faculty of Sustainability, Environmental and Life Sciences at Murdoch University.

Treena Burgess is Postdoctoral Fellow in the School of Biological Sciences and Biotechnology at Murdoch University.

Jane Chambers is Senior Lecturer in the School of Environmental Science at Murdoch University.

Mathew Crowther is Lecturer in the School of Biological Sciences at the University of Sydney.

Jenny Davis is Professor in the School of Biological Sciences at Monash University

Bernie Dell is Professor in the School of Biological Sciences and Biotechnology at Murdoch University.

Chris Dickman is Professor in the School of Biological Sciences at the University of Sydney.

Mark Garkaklis is Adjunct Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Howard Gill is Senior Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Richard Hobbs is Professor in the School of Plant Biology at the University of Western Australia

Stephen Hopper is Director, Royal Botanic Gardens Kew, United Kingdom

_ xiii

Pierre Horwitz is Associate Professor in the School of Natural Sciences at Edith Cowan University

Carolyn Jones is Senior Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Annette Koenders is Senior Lecturer in the School of Natural Sciences at Edith Cowan University.

Philip Ladd is Senior Lecturer in the School of Environmental Science at Murdoch University.

Dan Lunney is Principal Research Scientist in the Department of Environment and Climate Change New South Wales

Arthur McComb is Emeritus Professor in the School of Environmental Science at Murdoch University.

Graham O'Hara is Associate Professor in the School of Biological Sciences and Biotechnology at Murdoch University.

Eric Paling is Associate Professor in the School of Environmental Science at Murdoch University.

Harry Recher is Emeritus Professor in the School of Natural Sciences at Edith Cowan University.

Luke Twomey is Principal Scientist of the Swan River Trust, Western Australia

Mike van Keulen is Senior Lecturer in the School of Biological Sciences and Biotechnology at Murdoch University.

Grant Wardell-Johnson is Associate Professor in the School of Environmental Biology at Curtin University of Technology.

xiv

Preface

There are many excellent introductory biology textbooks available, so why write another? The answer lies partly in the rapid expansion of modern biology and partly in the needs and aspirations of modern students.

The second half of the 20th century and the early 21st century have seen such major developments as the unravelling of the structure of DNA, the complete cataloguing of the genome of humans and other species, and the first successful cloning. These developments are reflected in university biology curricula, which offer new units and courses in subjects such as molecular genetics and biotechnology and a much greater prominence for molecular biology in introductory textbooks. Simultaneously, other biologists have noted with concern the impacts of climate change, increasing human populations and changing technologies on natural environments and other species. They note that the rate of extinction in species at present is well above the background extinction rate shown in the fossil record, suggesting that the world is in a period of human-caused mass extinction that is reducing our biological heritage. These realisations are reflected in the curricula too, with new courses and units in conservation biology and restoration biology, as well as chapters on conservation in introductory textbooks.

Students majoring in biology at university need a thorough grounding in all these new areas as well as the more traditional aspects of the discipline. They are well served by existing textbooks, but many non-majors lack the space in their crowded timetables to cover all the topics in such detail. Instead, they need to emphasise the biology of direct relevance to their major field of study. Unfortunately, for many students it may not be clear how basic biology is relevant to their varying majors. This has long been recognised in biomedical education, where biology textbooks for physicians, dentists and other health professionals take an explicit human emphasis in their examples. Similarly, we believe that there is a need for a text with an environmental emphasis for those students needing a semester of biology as background for their specialist studies in environmental science, conservation biology, sustainable development, environmental engineering and related fields.

Environmental Biology is our attempt to meet that need. It begins with an account of the human species and our impact on the environment, before developing the biological knowledge and skills necessary to solve environmental problems through a consideration of scientific method (including the major unifying theories of evolution and the cell), biodiversity and the interactions of organisms with each other and with the physical environment. The final chapters integrate this background material in the applied disciplines of conservation biology and environmental restoration. The specialist chapter authors are all experienced researchers and accomplished teachers, and they illustrate their points with theoretical and practical environmental examples. We hope that this approach will enable students with interests in environmental science or sustainable development to see immediately the relevance of biology to their major discipline and integrate biological knowledge and skills into solving pressing environmental problems.

xv

Acknowledgements

A project such as this is possible only because of the generosity, assistance and hard work of many people. We are grateful to the chapter authors who have endured our questioning and nagging and accepted with good grace the editorial adjustments necessary to ensure a uniform style across all chapters. Many also kindly provided excellent photographs to illustrate their chapters.

Individual copyright holders are acknowledged in the text for permission to include figures, tables and quotes, but we would particularly like to thank Rodney Armistead, Richard Calver, Jane Chambers, Jenny Davis, Bernie Dell, Bill Dunstan, Hugh Finn, Ray Froend, Alex George, Richard Hobbs, John Huisman, N. Insalud, Manfred Jusaitis, Philip Ladd, Dan Lunney, Jenny Lawrence, David Macey, Neville Marchant, John Martin, Brett Mawbey, Ron Mawbey, Martina Müller, Jim Negus, Eric Paling, H. Patterson, John Plaza, Michael Shane, Laurie Twigg, Grant Wardell-Johnston, Maria Waters and Robert Whyte for generously providing photographs from their own collections. Jiri and Marie Lochman quickly and efficiently met our urgent requests for photographs to cover gaps in our requirements. Belinda Cale drew most of the original illustrations and adaptations, impressing everyone with her knack for turning rough conceptions into polished images.

We wore out many people at Cambridge University Press with the demands and mistakes that only novice editors can make. Thuong Du, Zoe Hamilton, Jill Henry, Karen Hildebrandt, Jodie Howell, Debbie Lee and Joy Window all gave valued advice and encouragement. Finally, we thank our families, friends and colleagues for their boundless patience during the book's long gestation.

Every effort has been made to trace and acknowledge copyright. The publishers apologise for any accidental infringement and welcome information that would rectify any error or omission in subsequent editions.