Ecologists have long struggled to predict features of ecological systems, such as the numbers and diversity of organisms. The wide range of body sizes in ecological communities, from tiny microbes to large animals and plants, is emerging as the key to prediction. Based on the relationship of body size with key biological rates and with the physical world experienced by aquatic organisms, we may be able to understand patterns of abundance and diversity, biogeography, interactions in food webs and the impact of fishing, adding up to a potential ‘periodic table’ for ecology. Remarkable progress on the unravelling, describing and modelling of aquatic food webs, revealing the fundamental role of body size, makes a book emphasizing marine and freshwater ecosystems particularly apt. Here, the importance of body size is examined at a range of scales, yielding broad perspectives that will be of interest to professional ecologists, from students to senior researchers.

Alan G. Hildrew is Professor of Ecology in the School of Biological and Chemical Sciences at Queen Mary, University of London.

David G. Raffaelli is Professor of Environmental Science at the University of York.

Ronnie Edmonds-Brown is a Senior Lecturer in Environmental Sciences at the University of Hertfordshire.
Body Size

The Structure and Function of Aquatic Ecosystems

Edited by

ALAN G. HILDREW
School of Biological and Chemical Sciences, Queen Mary, University of London, UK

DAVID G. RAFFAELLI
Environment Department, University of York, UK

RONNI EDMONDS-BROWN
Division of Geography and Environmental Sciences, University of Hertfordshire, UK
Contents

List of contributors page vii
Preface ix

1 The metabolic theory of ecology and the role of body size in marine and freshwater ecosystems
James H. Brown, Andrew P. Allen and James F. Gillooly 1

2 Body size and suspension feeding
Stuart Humphries 16

3 Life histories and body size
David Atkinson and Andrew G. Hirst 33

4 Relationship between biomass turnover and body size for stream communities
Alexander D. Huryn and Arthur C. Benke 55

5 Body size in streams: macroinvertebrate community size composition along natural and human-induced environmental gradients
Colin R. Townsend and Ross M. Thompson 77

6 Body size and predatory interactions in freshwaters: scaling from individuals to communities
Guy Woodward and Philip Warren 98

7 Body size and trophic cascades in lakes
J. Iwan Jones and Erik Jeppesen 118

8 Body size and scale invariance: multifractals in invertebrate communities
Peter E. Schmid and Jenny M. Schmid-Araya 140

9 Body size and biogeography
B. J. Finlay and G. F. Esteban 167

10 By wind, wings or water: body size, dispersal and range size in aquatic invertebrates
Simon D. Rundle, David T. Bilton and Andrew Foggo 186
CONTENTS

11 Body size and diversity in marine systems
 Richard M. Warwick 210

12 Interplay between individual growth and population feedbacks shapes body-size distributions
 Lennart Persson and André M. De Roos 225

13 The consequences of body size in model microbial ecosystems
 Owen L. Petchey, Zachary T. Long and Peter J. Morin 245

14 Body size, exploitation and conservation of marine organisms
 Simon Jennings and John D. Reynolds 266

15 How body size mediates the role of animals in nutrient cycling in aquatic ecosystems
 Robert O. Hall, Jr., Benjamin J. Koch, Michael C. Marshall,
 Brad W. Taylor and Lusha M. Tronstad 286

16 Body sizes in food chains of animal predators and parasites
 Joel E. Cohen 306

17 Body size in aquatic ecology: important, but not the whole story
 Alan G. Hildrew, David G. Raffaelli and Ronni Edmonds-Brown 326

Index 335
Contributors

Andrew P. Allen National Center for Ecological Analysis and Synthesis, Santa Barbara, CA 93101, USA.
David Atkinson Population and Evolutionary Biology Research Group, School of Biological Sciences, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
Arthur C. Benke Aquatic Biology Program, Box 870206, Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0206, USA.
David T. Bilton Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth PL4 8AA, UK.
James H. Brown Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
Joel E. Cohen Laboratory of Populations, Rockefeller and Columbia Universities, 1230 York Avenue, Box 20, New York, NY 10021-6399, USA.
André M. De Roos Institute of Biodiversity and Ecosystems, University of Amsterdam, P.O.B. 94084, NL-1090 GB Amsterdam, the Netherlands.
Ronni Edmonds-Brown Division of Geography and Environmental Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
G. F. Esteban School of Biological and Chemical Sciences, Queen Mary, University of London, East Stoke, Wareham Dorset BH20 6BB, UK.
B. J. Finlay School of Biological and Chemical Sciences, Queen Mary, University of London, East Stoke, Wareham Dorset BH20 6BB, UK.
Andrew Foggo Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth PL4 8AA, UK.
James F. Gillooly Department of Zoology, University of Florida, Gainesville, FL 32607, USA.
Robert O. Hall, Jr. Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
Alan G. Hildrew School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK.
Andrew G. Hirst British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
Stuart Humphries Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
Alexander D. Huryn Aquatic Biology Program, Box 870206, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
LIST OF CONTRIBUTORS

Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0206, USA.

Simon Jennings Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft Laboratory, NR33 0HT, UK.

Erik Jeppesen Department of Freshwater Ecology, National Environmental Research Institute, Denmark and Department of Plant Biology, University of Aarhus, Ole Worms Allé, Aarhus, Denmark.

J. Iwan Jones Centre for Ecology and Hydrology, Dorset, Dorchester DT2 8ZD, UK.

Benjamin J. Koch Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.

Zachary T. Long Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557 and Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062.

Michael C. Marshall Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.

Peter J. Morin Department of Ecology, Evolution & Natural Resources, 14 College Farm Rd., Cook College, Rutgers University, New Brunswick, NJ 08901, USA.

Lennart Persson Department of Ecology and Environmental Science, Umeå University, S-901 87 Umeå, Sweden.

Owen L. Petchey Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1SA, UK.

David G. Raffaelli Environment Department, University of York, Heslington, York Y010 SDD, UK.

John D. Reynolds Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.

Simon D. Rundle Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth PL4 8AA, UK.

Peter E. Schmid School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK and Institute of Freshwater Ecology, University of Vienna, 1090 Wien, Althanstrasse 14, Austria.

Jenny M. Schmid-Araya School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK.

Brad W. Taylor Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.

Ross M. Thompson School of Biological Sciences, Building 18, Monash University, Victoria 3800, Australia.

Colin R. Townsend Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9054, New Zealand.

Lusha M. Tronstad Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.

Richard M. Warwick Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK.

Guy Woodward School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK.
Preface

More than ten years ago, two of us (AGH and DGR) were lucky enough to edit a previous symposium of the British Ecological Society (BES) – *Aquatic Ecology: Scale, Pattern and Process* (Giller, Hildrew & Raffaelli, 1994). In the Introduction to that volume, we pointed out that the BES had not devoted a single previous symposium to aquatic ecosystems. Evidently we did not change the culture, since the *Body Size* symposium held at the University of Hertfordshire in September 2005 was only the second!

Body Size: The Structure and Function of Aquatic Ecosystems had two objectives: (i) to explore how the scale of approach affected the patterns that were detected and the processes that appeared to be important, and (ii) to compare freshwater and marine ecosystems. In *Body Size: The Structure and Function of Aquatic Ecosystems*, both those questions of scale and comparison among systems are very much still alive as continuing themes. Body size determines overwhelmingly the scale at which organisms perceive and navigate through their physical world, and the contrasts between freshwater and marine ecosystems remain evident. Body size is a species trait with implications beyond scale, however, and we believe that the present volume shows that more similarities than differences are evident among the diverse aquatic systems considered. Indeed, several authors argue here that fundamental ecological processes are revealed by comparing marine, freshwater and terrestrial systems.

In organizing this meeting, we were well aware of the increasing interest in body size from the wider ecological community over the past 30 years, as well as the technical challenge involved in exploring body-size data. Of course, the fascination with body size has a much longer history in ecology and was prominent in the writings, for example, of Alfred Wallace (1858) and Charles Elton (1927), the latter having discussed at length its relevance to trophic interactions (see review by Warren, 2005). It was R. H. Peters’ (1983) elegant exposition of the physiological, environmental and ecological correlates of body size that re-ignited modern interest, however, and which led indirectly to an explosion in the macroecological literature over the past ten years (Blackburn & Gaston, 2003), to the metabolic theory of ecology (Brown *et al.*, 2004) and indeed to this present volume. All of the papers presented at the Hatfield meeting connect...
with one or more of these themes and in many cases attempt to integrate aspects of body-size research that were previously treated separately. A focus on aquatic systems seemed appropriate because aquatic ecologists have historically been particularly prominent in the debate. Thus, Hardy (1924) was amongst the first to point out the significance of ontogenic (sized-based) shifts in the food webs supporting fisheries, Ryther (1969) illustrated the effects of predator and prey body sizes on food-chain length and global patterns of marine productivity, whilst Hutchinson (1959) provided a classic account of body size and species coexistence. It may well be that patterns and processes related to body size are particularly important in aquatic systems, or at least are more obvious.

We asked the author(s) of each paper to examine the importance and role of body size in the systems in which they work. Essentially the book builds from the level of the individual and a consideration of body size as a species trait (Humphries; Atkinson & Hirst; Huryn & Benke; Townsend & Thompson), through food webs and communities (Woodward & Warren; Jones & Jeppesen; Schmid & Schmid-Araya), to body-size related macroecological patterns in aquatic systems (Finlay & Esteban; Rundle, Hilton & Fogg; Warwick), to dynamics and patterns in whole communities and ecosystems (Persson & De Roos; Petchey, Long & Morin; Jennings & Reynolds; Hall et al.; Cohen). Jim Brown and colleagues set the scene with a ‘wet’ exposition of metabolic theory, and although we did not ask contributors explicitly to test these ideas several did. The meeting certainly generated an old-fashioned sense of community and of excitement in what people had to say, though it was just as apparent how fragmented the community is, as was reflected in the examples chosen to illustrate particular points and the literature cited by authors from different ‘stables’ and backgrounds.

We hope that this book reflects just a little of this excitement and serves as a useful synthesis of this area of ecology. Finally, we wish to thank all the contributors for their efforts and remarkable efficiency, the British Ecological Society and the Freshwater Biological Association for their support, and the local organizers at the University of Hertfordshire for all their hard work.

Alan Hildrew,
Dave Raffaelli,
Ronni Edmonds-Brown.

References

