Contents

Preface		page xiii
Acknowledgments		XV
1	INTRODUCTION	1
	The Role of the Computer in Data Analysis	1
	Statistics: Descriptive and Inferential	2
	Variables and Constants	2
	The Measurement of Variables	3
	Discrete and Continuous Variables	8
	Setting a Context with Real Data	11
	Exercises	12
2	EXAMINING UNIVARIATE DISTRIBUTIONS	20
	Counting the Occurrence of Data Values	20
	When Variables Are Measured at the Nominal Level	20
	Bar Graphs, 21 • Pie Graphs, 23	
	When Variables Are Measured at the Ordinal, Interval, or Ratio Level	24
	Frequency and Percent Distribution Tables, 24 •	
	Stem-and-Leaf Displays, 26 • Histograms, 29 •	
	Line Graphs, 31	
	Describing the Shape of a Distribution	33
	Accumulating Data	35
	Cumulative Percent Distributions	35
	Ogive Curves	35
	Percentile Ranks	36
	Percentiles	37
	Five-Number Summaries and Boxplots	40
	Exercises	45
3	MEASURES OF LOCATION, SPREAD, AND SKEWNESS	60
	Characterizing the Location of a Distribution	60
	The Mode	60
	The Median	63
	The Arithmetic Mean	65
	Comparing the Mode, Median, and Mean	67
	Characterizing the Spread of a Distribution	70
	The Range and Interquartile Range	72
	The Variance	74
	The Standard Deviation	76

CONTENTS vi Characterizing the Skewness of a Distribution 77 78 Selecting Measures of Location and Spread Applying What We Have Learned 79 Exercises 82 4 RE-EXPRESSING VARIABLES 91 Linear and Nonlinear Transformations 91 Linear Transformations: Addition, Subtraction, Multiplication, and Division 91 The Effect on the Shape of a Distribution 93 The Effect on Summary Statistics of a Distribution 95 **Common Linear Transformations** 95 Standard Scores 97 z-Scores 98 Using z-Scores to Detect Outliers, 100 • Using z-Scores to Compare Scores in Different Distributions, 101 • Relating z-Scores to Percentile Ranks, 102 Nonlinear Transformations: Square Roots and Logarithms 103 Nonlinear Transformations: Ranking Variables 110 Other Transformations: Recoding and Combining Variables 111 **Recoding Variables** 111 **Combining Variables** 113 Exercises 114 5 EXPLORING RELATIONSHIPS BETWEEN TWO VARIABLES 121 When Both Variables Are at Least Interval-Leveled 121 Scatterplots 122 The Pearson Product Moment Correlation Coefficient 126 Interpreting the Pearson Correlation Coefficient, 130 • The Effect of Linear Transformations, 132 • Restriction of Range, 132 • The Shape of the Underlying Distributions, 133 • The Reliability of the Data, 133 When at Least One Variable Is Ordinal and the Other Is at Least Ordinal: The Spearman Rank Correlation Coefficient 133 When at Least One Variable Is Dichotomous: Other Special Cases of the Pearson **Correlation Coefficient** 135 The Point Biserial Correlation Coefficient: The Case of One at-Least-Interval and One Dichotomous Variable 135 The Phi Coefficient: The Case of Two Dichotomous Variables 140 Other Visual Displays of Bivariate Relationships 144 Selection of Appropriate Statistic/Graph to Summarize a Relationship 147 Exercises 148 6 SIMPLE LINEAR REGRESSION 158 The "Best-Fitting" Linear Equation 158 The Accuracy of Prediction Using the Linear Regression Model 164 The Standardized Regression Equation 165 *R* as a Measure of the Overall Fit of the Linear Regression Model 165 Simple Linear Regression When the Independent Variable Is Dichotomous 169 Using r and R as Measures of Effect Size 172

	Emphasizing the Importance of the Scatterplot	172
	Exercises	174
7	PROBABILITY FUNDAMENTALS	182
	The Discrete Case	182
	The Complement Rule of Probability	184
	The Additive Rules of Probability	184
	First Additive Rule of Probability	185
	Second Additive Rule of Probability	186
	The Multiplicative Rule of Probability	187
	The Relationship between Independence and Mutual Exclusivity	189
	Conditional Probability	190
	The Law of Large Numbers	191
	Exercises	192
8	THEORETICAL PROBABILITY MODELS	195
	The Binomial Probability Model and Distribution	195
	The Applicability of the Binomial Probability Model	200
	The Normal Probability Model and Distribution	204
	Using the Normal Distribution to Approximate the Binomial Distribution	210
	Exercises	210
9	THE ROLE OF SAMPLING IN INFERENTIAL STATISTICS	217
	Samples and Dopulations	217
	Pandom Samples	217
	Obtaining a Simple Random Sample	210
	Sampling with and without Replacement	21)
	Sampling Distributions	221
	Describing the Sampling Distribution of Means Empirically	223
	Describing the Sampling Distribution of Means Theoretically: The Central	
	Limit Theorem	226
	Central Limit Theorem (CLT)	227
	Estimators and BIAS	230
	Exercises	231
10	INFERENCES INVOLVING THE MEAN OF A SINGLE POPULATION WHEN σ IS KNOWN	234
	Estimating the Population Mean μ When the Population Standard Deviation	
	σ Is Known	234
	Interval Estimation	236
	Relating the Length of a Confidence Interval, the Level of Confidence, and	
	the Sample Size	239
	Hypothesis Testing	239
	The Relationship between Hypothesis Testing and Interval Estimation	247
	Effect Size	248
	Type II Error and the Concept of Power	249
	Increasing the Level of Significance, α	253
	Increasing the Effect Size, δ	253
	Decreasing the Standard Error of the Mean, $\sigma \bar{x}$	253

vii

viii CONTENTS **Closing Remarks** 254 Exercises 254 INFERENCES INVOLVING THE MEAN WHEN σ IS NOT KNOWN: ONE- AND 11 **TWO-SAMPLE DESIGNS** 259 Single Sample Designs When the Parameter of Interest Is the Mean and σ Is Not Known 259 The t-Distribution 260 Degrees of Freedom for the One-Sample t-Test 261 Violating the Assumption of a Normally Distributed Parent Population in the One-Sample t-Test 262 Confidence Intervals for the One-Sample t-Test 263Hypothesis Tests: The One-Sample t-Test 267 Effect Size for the One-Sample t-Test 269 Two-Sample Designs When the Parameter of Interest Is μ , and σ Is Not Known 273 Independent (or Unrelated) and Dependent (or Related) Samples 274 Independent Samples t-Test and Confidence Interval 275 The Assumptions of the Independent Samples t-Test 277 Effect Size for the Independent Samples t-Test, 285 Paired Samples t-Test and Confidence Interval 288 The Assumptions of the Paired Samples t-Test 289 Effect Size for the Paired Samples t-Test 293 Summary 294 The Standard Error of the Mean Difference for Independent Samples: A More Complete Account (Optional) 295 Case 1: σ Known 295 Case 2: σ Not Known 297 Step 1: Estimating σ^2 Using the Variance Estimators $\hat{\sigma}_1^2$ and $\hat{\sigma}_2^2$, 299 • Step 2: Estimating the Standard Error of the Mean Difference, $\sigma_{\overline{X}_1 - \overline{X}_2}$ Using σ^2 , 299 Exercises 300 12 ONE-WAY ANALYSIS OF VARIANCE 315 The Disadvantage of Multiple t-Tests 315 The One-Way Analysis of Variance 317 A Graphical Illustration of the Role of Variance in Tests on Means 317 ANOVA as an Extension of the Independent Samples t-Test 318 Developing an Index of Separation for the Analysis of Variance 319 Carrying Out the ANOVA Computation 319 The Between-Group Variance (MS_B) , 320 • The Within-Group Variance (MS_W), 321 The Assumptions of the One-Way ANOVA 321 Testing the Equality of Population Means: The F-Ratio 322 How to Read the Tables and to Use the SPSS Compute Statement for

324

327

CONTENTS

	Measuring the Effect Size	328
	Post-HOC Multiple Comparison Tests	330
	The Bonferroni Adjustment: Testing Planned Comparisons	340
	The Bonferroni Tests on Multiple Measures	343
	Exercises	345
13	TWO-WAY ANALYSIS OF VARIANCE	350
	The Two-Factor Design	350
	The Concept of Interaction	353
	The Hypotheses That Are Tested by a Two-Way Analysis of Variance	358
	Assumptions of the Two-Way ANOVA	358
	Balanced versus Unbalanced Factorial Designs	360
	Partitioning the Total Sum of Squares	360
	Using the F-Ratio to Test the Effects in Two-Way ANOVA	361
	Carrying Out the Two-Way ANOVA Computation by Hand	362
	Decomposing Score Deviations about the Grand Mean	366
	Modeling Each Score as a Sum of Component Parts	367
	Explaining the Interaction as a Joint (or Multiplicative) Effect	368
	Measuring Effect Size	368
	Fixed versus Random Factors	372
	Post-Hoc Multiple Comparison Tests	373
	Summary of Steps to Be Taken in a Two-Way ANOVA Procedure	379
	Exercises	383
14	CORRELATION AND SIMPLE REGRESSION AS INFERENTIAL TECHNIQUES	391
	The Bivariate Normal Distribution	391
	Testing Whether the Population Pearson Product Moment Correlation	
	Equals Zero	394
	Using a Confidence Interval to Estimate the Size of the Population	
	Correlation Coefficient, $ ho$	397
	Revisiting Simple Linear Regression for Prediction	400
	Estimating the Population Standard Error of Prediction, $\sigma_{_{Y X}}$	400
	Testing the <i>b</i> -Weight for Statistical Significance	401
	Explaining Simple Regression Using an Analysis	
	of Variance Framework	405
	Measuring the Fit of the Overall Regression Equation: Using R and R^2	407
	Relating R^2 to $\sigma_{Y X}^2$	408
	Testing <i>R</i> ² for Statistical Significance	409
	Estimating the True Population R^2 : The Adjusted R^2	409
	Exploring the Goodness of Fit of the Regression Equation: Using Regression	
	Diagnostics	410
	Residual Plots: Evaluating the Assumptions Underlying Regression, 413 •	
	Detecting Influential Observations: Discrepancy and Leverage, 415 •	
	Using SPSS to Obtain Leverage, 417 • Using SPSS to Obtain	
	Discrepancy, 417 • Using SPSS to Obtain Influence, 418	
	Using the Prediction Model to Predict Ice Cream Sales	422
	Simple Regression When the Predictor Is Dichotomous	422
	Exercises	424

х

CONTENTS

15	AN INTRODUCTION TO MULTIPLE REGRESSION	435
	The Basic Equation with Two Predictors	436
	Equations for b, β , and R_{Y12} When the Predictors Are Not Correlated	437
	Equations for b, β , and R_{Y12} When the Predictors Are Correlated	438
	Summarizing and Expanding on Some Important Principles of Multiple Regression	440
	Testing the <i>b</i> -Weights for Statistical Significance	444
	Assessing the Relative Importance of the Independent Variables in the Equation	445
	Measuring the Decrease in R^2 Directly: An Alternative to the Squared	
	Part Correlation	446
	Evaluating the Statistical Significance of the Change in R^2	446
	The <i>b</i> -Weight as a Partial Slope in Multiple Regression	448
	Multiple Regression When One of the Two Independent Variables Is Dichotomous	450
	The Concept of Interaction between Two Variables That Are at Least Interval-Leveled	454
	Testing the Statistical Significance of an Interaction Using SPSS	456
	Centering First-Order Effects to Achieve Meaningful Interpretations of <i>b</i> -Weights	460
	Understanding the Nature of a Statistically Significant Two-Way Interaction	460
	Interaction When One of the Independent Variables Is Dichotomous and the	
	Other Is Continuous	463
	Putting It All Together: A Student Project Reprinted	466
	Measuring the Variables	467
	Examining the Variables Individually and in Pairs	468
	Examining the variables Multivariately with Mathematics Achievement as the Criterion	4/1
	Exercises	4/3
16	NONPARAMETRIC METHODS	485
	Parametric versus Nonparametric Methods	485
	Nonparametric Methods When the Dependent Variable Is at the Nominal Level	486
	The Chi-Square Distribution (χ^2)	486
	The Chi-Square Goodness-of-Fit Test	489
	The Chi-Square Test of Independence	493
	Assumptions of the Chi-Square Test of Independence, 497	
	Fisher's Exact Test	499
	Calculating the Fisher Exact Test by Hand Using the	
	Hypergeometric Distribution, 501	505
	Nonparametric Methods When the Dependent Variable Is Ordinal-Leveled	505
	Wilcoxon Sign lest	505
	The Knucleal Wellie Analysis of Variance	508
	Froncisco	512
	Exercises	514
AP	PENDIX A. Data set descriptions	519
	Anscombe	519
	Basket	519
	Blood	519
	Brainsz	520
	Currency	520
	Framingham	520
	Hamburg	522

CONTENTS

Ice Cream	522
Impeach	522
Learndis	523
Mandex.sav	524
Marijuan	524
NELS	524
Skulls	528
States	529
Stepping	529
Temp	530
Wages	530
APPENDIX B. GENERATING DISTRIBUTIONS FOR CHAPTERS 8 AND 9 USING	
SPSS SYNTAX	531
(1) Creating a New Data Set File with ID Values for 75 Cases	531
(2) The SPSS Syntax Program (Called, in General, a Macro) to Generate the	
Set of 50,000 Sample Means Used to Form the Sampling Distribution of Means	
Graphed as the Histogram of Figure 9.2	532
(3) The SPSS Syntax Program to Generate the Set of 1,000 Normally Distributed	
Scores with Mean = 15 and SD = 3 as Illustrated by the Histogram of Figure 9.3	533
(4) The SPSS Syntax Program to Generate the Set of 1,000 Normally Distributed	
Scores with Mean = 15 and SD = 3 as Illustrated by the Histogram of Figure 9.4	534
(5) The SPSS Syntax Program to Generate the Set of 1,000 Positively Skewed	
Distributed Scores with Mean $= 8$ and SD $= 4$ as Illustrated by the Histogram of	
Figure 9.5	534
(6) The SPSS Syntax Program, Sampdisver2.Sps, to Generate the Set of 5,000 Sample	
Means Used to Form the Sampling Distribution of Means Graphed as the Histogram	ı
of Figure 9.6.	535
APPENDIX C. STATISTICAL TABLES	537
Table 1. Areas under the Standard Normal Curve (to the Right of the z-Score)	537
Table 2. Distribution of t-Values for Right-Tail Areas	538
Table 3. Distribution of <i>F</i> -Values for Right-Tail Areas	539
Table 4. Binomial Distribution Table	543
Table 5. Chi-Square Distribution Values for Right-Tailed Areas	548
Table 6. The Critical q-Values	549
Table 7. The Critical U-Values	550
APPENDIX D. References	554
APPENDIX E. SOLUTIONS TO EXERCISES	557
Chapter 1. Solutions	557
Chapter 2. Solutions	559
Chapter 3. Solutions	579
Chapter 4. Solutions	597
Chapter 5. Solutions	607
Chapter 6. Solutions	626
Chapter 7. Solutions	640
Chapter 8. Solutions	641

Cambridge University Press 978-0-521-67637-3 - Statistics Using SPSS: An Integrative Approach, Second Edition Sharon Lawner Weinberg and Sarah Knapp Abramowitz Table of Contents <u>More information</u>

xii

CONTENTS

Chapter 9 Solutions	644
Chapter 10. Solutions	649
Chapter 11. Solutions	640
Chapter 11. Solutions	049
Chapter 12. Solutions	6/3
Chapter 13. Solutions	689
Chapter 14. Solutions	703
Chapter 15. Solutions	715
Chapter 16. Solutions	743
-	

Index

752