
Introduction

What is mathematics? High school mathematics is concerned mostly with solv-
ing equations and computing answers to numerical questions. College mathe-
matics deals with a wider variety of questions, involving not only numbers, but
also sets, functions, and other mathematical objects. What ties them together
is the use of deductive reasoning to find the answers to questions. When you
solve an equation for x you are using the information given by the equation
to deduce what the value of x must be. Similarly, when mathematicians solve
other kinds of mathematical problems, they always justify their conclusions
with deductive reasoning.

Deductive reasoning in mathematics is usually presented in the form of a
proof. One of the main purposes of this book is to help you develop your
mathematical reasoning ability in general, and in particular your ability to read
and write proofs. In later chapters we’ll study how proofs are constructed in
detail, but first let’s take a look at a few examples of proofs.

Don’t worry if you have trouble understanding these proofs. They’re
just intended to give you a taste of what mathematical proofs are like. In
some cases you may be able to follow many of the steps of the proof, but you
may be puzzled about why the steps are combined in the way they are, or how
anyone could have thought of the proof. If so, we ask you to be patient. Many
of these questions will be answered later in this book, particularly in Chapter 3.

All of our examples of proofs in this introduction will involve prime num-
bers. Recall that an integer larger than 1 is said to be prime if it cannot be
written as a product of two smaller positive integers. For example, 6 is not a
prime number, since 6 = 2 · 3, but 7 is a prime number.

Before we can give an example of a proof involving prime numbers, we
need to find something to prove – some fact about prime numbers whose
correctness can be verified with a proof. Sometimes you can find interesting
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2 Introduction

patterns in mathematics just by trying out a calculation on a few numbers.
For example, consider the table in Figure 1. For each integer n from 2 to 10,
the table shows whether or not both n and 2n − 1 are prime, and a surprising
pattern emerges. It appears that 2n − 1 is prime in precisely those cases in
which n is prime!

Figure 1

Will this pattern continue? It is tempting to guess that it will, but this is
only a guess. Mathematicians call such guesses conjectures. Thus, we have the
following two conjectures:

Conjecture 1. Suppose n is an integer larger than 1 and n is prime. Then
2n − 1 is prime.

Conjecture 2. Suppose n is an integer larger than 1 and n is not prime. Then
2n − 1 is not prime.

Unfortunately, if we continue the table in Figure 1, we immediately find that
Conjecture 1 is incorrect. It is easy to check that 11 is prime, but 211 − 1 =
2047 = 23 · 89, so 211 − 1 is not prime. Thus, 11 is a counterexample to
Conjecture 1. The existence of even one counterexample establishes that the
conjecture is incorrect, but it is interesting to note that in this case there are
many counterexamples. If we continue checking numbers up to 30, we find
two more counterexamples to Conjecture 1: Both 23 and 29 are prime, but
223 − 1 = 8,388,607 = 47 · 178,481 and 229 − 1 = 536,870,911 = 2, 089 ·
256,999. However, no number up to 30 is a counterexample to Conjecture 2.

Do you think that Conjecture 2 is correct? Having found counterexamples to
Conjecture 1, we know that this conjecture is incorrect, but our failure to find a
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Introduction 3

counterexample to Conjecture 2 does not show that it is correct. Perhaps there
are counterexamples, but the smallest one is larger than 30. Continuing to check
examples might uncover a counterexample, or, if it doesn’t, it might increase
our confidence in the conjecture. But we can never be sure that the conjecture
is correct if we only check examples. No matter how many examples we check,
there is always the possibility that the next one will be the first counterexample.
The only way we can be sure that Conjecture 2 is correct is to prove it.

In fact, Conjecture 2 is correct. Here is a proof of the conjecture:

Proof of Conjecture 2. Since n is not prime, there are positive integers
a and b such that a < n, b < n, and n = ab. Let x = 2b − 1 and y =
1 + 2b + 22b + · · · + 2(a−1)b. Then

xy = (2b − 1) · (1 + 2b + 22b + · · · + 2(a−1)b)

= 2b · (1 + 2b + 22b + · · · + 2(a−1)b) − (1 + 2b + 22b + · · · + 2(a−1)b)

= (2b + 22b + 23b + · · · + 2ab) − (1 + 2b + 22b + · · · + 2(a−1)b)

= 2ab − 1

= 2n − 1.

Since b < n, we can conclude that x = 2b − 1 < 2n − 1. Also, since
ab = n > a, it follows that b > 1. Therefore, x = 2b − 1 > 21 − 1 = 1, so
y < xy = 2n − 1. Thus, we have shown that 2n − 1 can be written as the prod-
uct of two positive integers x and y, both of which are smaller than 2n − 1, so
2n − 1 is not prime. �

Now that the conjecture has been proven, we can call it a theorem. Don’t
worry if you find the proof somewhat mysterious. We’ll return to it again at
the end of Chapter 3 to analyze how it was constructed. For the moment, the
most important point to understand is that if n is any integer larger than 1
that can be written as a product of two smaller positive integers a and b, then
the proof gives a method (admittedly, a somewhat mysterious one) of writing
2n − 1 as a product of two smaller positive integers x and y. Thus, if n is not
prime, then 2n − 1 must also not be prime. For example, suppose n = 12, so
2n − 1 = 4095. Since 12 = 3 · 4, we could take a = 3 and b = 4 in the proof.
Then according to the formulas for x and y given in the proof, we would
have x = 2b − 1 = 24 − 1 = 15, and y = 1 + 2b + 22b + · · · + 2(a−1)b =
1 + 24 + 28 = 273. And, just as the formulas in the proof predict, we have
xy = 15 · 273 = 4095 = 2n − 1. Of course, there are other ways of factoring
12 into a product of two smaller integers, and these might lead to other ways of
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4 Introduction

factoring 4095. For example, since 12 = 2 · 6, we could use the values a = 2
and b = 6. Try computing the corresponding values of x and y and make sure
their product is 4095.

Although we already know that Conjecture 1 is incorrect, there are still inter-
esting questions we can ask about it. If we continue checking prime numbers
n to see if 2n − 1 is prime, will we continue to find counterexamples to the
conjecture – examples for which 2n − 1 is not prime? Will we continue to find
examples for which 2n − 1 is prime? If there were only finitely many prime
numbers, then we might be able to investigate these questions by simply check-
ing 2n − 1 for every prime number n. But in fact there are infinitely many prime
numbers. Euclid (circa 350 b.c.) gave a proof of this fact in Book IX of his
Elements. His proof is one of the most famous in all of mathematics:

Theorem 3. There are infinitely many prime numbers.
Proof. Suppose there are only finitely many prime numbers. Let p1, p2, . . . , pn

be a list of all prime numbers. Let m = p1 p2 · · · pn + 1. Note that m is not
divisible by p1, since dividing m by p1 gives a quotient of p2 p3 · · · pn and a
remainder of 1. Similarly, m is not divisible by any of p2, p3, . . . , pn .

We now use the fact that every integer larger than 1 is either prime or can
be written as a product of primes. (We’ll see a proof of this fact in Chapter 6.)
Clearly m is larger than 1, so m is either prime or a product of primes. Suppose
first that m is prime. Note that m is larger than all of the numbers in the
list p1, p2, . . . , pn , so we’ve found a prime number not in this list. But this
contradicts our assumption that this was a list of all prime numbers.

Now suppose m is a product of primes. Let q be one of the primes in this
product. Then m is divisible by q. But we’ve already seen that m is not divisible
by any of the numbers in the list p1, p2, . . . , pn , so once again we have a
contradiction with the assumption that this list included all prime numbers.

Since the assumption that there are finitely many prime numbers has led to
a contradiction, there must be infinitely many prime numbers. �

Once again, you should not be concerned if some aspects of this proof seem
mysterious. After you’ve read Chapter 3 you’ll be better prepared to understand
the proof in detail. We’ll return to this proof then and analyze its structure.

We have seen that if n is not prime then 2n − 1 cannot be prime, but if n is
prime then 2n − 1 can be either prime or not prime. Because there are infinitely
many prime numbers, there are infinitely many numbers of the form 2n − 1
that, based on what we know so far, might be prime. But how many of them
are prime?
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Introduction 5

Prime numbers of the form 2n − 1 are called Mersenne primes, after Father
Marin Mersenne (1588–1647), a French monk and scholar who studied these
numbers. Although many Mersenne primes have been found, it is still not
known if there are infinitely many of them. Many of the largest known prime
numbers are Mersenne primes. As of this writing (April 2005), the largest
known prime number is the Mersenne prime 225,964,951 − 1, a number with
7,816,230 digits.

Mersenne primes are related to perfect numbers, the subject of another fa-
mous unsolved problem of mathematics. A positive integer n is said to be
perfect if n is equal to the sum of all positive integers smaller than n that divide
n. (For any two integers m and n, we say that m divides n if n is divisible by m;
in other words, if there is an integer q such that n = qm.) For example, the only
positive integers smaller than 6 that divide 6 are 1, 2, and 3, and 1 + 2 + 3 = 6.
Thus, 6 is a perfect number. The next smallest perfect number is 28. (You should
check for yourself that 28 is perfect by finding all the positive integers smaller
than 28 that divide 28 and adding them up.)

Euclid proved that if 2n − 1 is prime, then 2n−1(2n − 1) is perfect. Thus,
every Mersenne prime gives rise to a perfect number. Furthermore, about
2000 years after Euclid’s proof, the Swiss mathematician Leonhard Euler
(1707–1783), the most prolific mathematician in history, proved that every
even perfect number arises in this way. (For example, note that 6 = 21(22 − 1)
and 28 = 22(23 − 1).) Because it is not known if there are infinitely many
Mersenne primes, it is also not known if there are infinitely many even perfect
numbers. It is also not known if there are any odd perfect numbers.

Although there are infinitely many prime numbers, the primes thin out as
we look at larger and larger numbers. For example, there are 25 primes be-
tween 1 and 100, 16 primes between 1000 and 1100, and only six primes
between 1,000,000 and 1,000,100. As our last introductory example of a proof,
we show that there are long stretches of consecutive positive integers con-
taining no primes at all. In this proof, we’ll use the following terminology:
For any positive integer n, the product of all integers from 1 to n is called
n factorial and is denoted n!. Thus, n! = 1 · 2 · 3 · · · n. As with our previous
two proofs, we’ll return to this proof at the end of Chapter 3 to analyze its
structure.

Theorem 4. For every positive integer n, there is a sequence of n consecutive
positive integers containing no primes.
Proof. Suppose n is a positive integer. Let x = (n + 1)! + 2. We will show that
none of the numbers x, x + 1, x + 2, . . . , x + (n − 1) is prime. Since this is a
sequence of n consecutive positive integers, this will prove the theorem.
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6 Introduction

To see that x is not prime, note that

x = 1 · 2 · 3 · 4 · · · (n + 1) + 2

= 2 · (1 · 3 · 4 · · · (n + 1) + 1).

Thus, x can be written as a product of two smaller positive integers, so x is
not prime.

Similarly, we have

x + 1 = 1 · 2 · 3 · 4 · · · (n + 1) + 3

= 3 · (1 · 2 · 4 · · · (n + 1) + 1),

so x + 1 is also not prime. In general, consider any number x + i , where
0 ≤ i ≤ n − 1. Then we have

x + i = 1 · 2 · 3 · 4 · · · (n + 1) + (i + 2)

= (i + 2) · (1 · 2 · 3 · · · (i + 1) · (i + 3) · · · (n + 1) + 1),

so x + i is not prime. �

Theorem 4 shows that there are sometimes long stretches between one prime
and the next prime. But primes also sometimes occur close together. Since 2
is the only even prime number, the only pair of consecutive integers that are
both prime is 2 and 3. But there are lots of pairs of primes that differ by only
two, for example, 5 and 7, 29 and 31, and 7949 and 7951. Such pairs of primes
are called twin primes. It is not known whether there are infinitely many twin
primes.

Exercises

∗1. (a) Factor 215 − 1 = 32,767 into a product of two smaller positive integers.
(b) Find an integer x such that 1 < x < 232767 − 1 and 232767 − 1 is divis-

ible by x.
2. Make some conjectures about the values of n for which 3n − 1 is prime or

the values of n for which 3n − 2n is prime. (You might start by making a
table similar to Figure 1.)

∗3. The proof of Theorem 3 gives a method for finding a prime number different
from any in a given list of prime numbers.
(a) Use this method to find a prime different from 2, 3, 5, and 7.
(b) Use this method to find a prime different from 2, 5, and 11.

4. Find five consecutive integers that are not prime.
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Introduction 7

5. Use the table in Figure 1 and the discussion on p. 5 to find two more perfect
numbers.

6. The sequence 3, 5, 7 is a list of three prime numbers such that each pair of
adjacent numbers in the list differ by two. Are there any more such “triplet
primes”?
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1

Sentential Logic

1.1. Deductive Reasoning and Logical Connectives

As we saw in the introduction, proofs play a central role in mathematics, and
deductive reasoning is the foundation on which proofs are based. Therefore,
we begin our study of mathematical reasoning and proofs by examining how
deductive reasoning works.

Example 1.1.1. Here are three examples of deductive reasoning:

1. It will either rain or snow tomorrow.
It’s too warm for snow.
Therefore, it will rain.

2. If today is Sunday, then I don’t have to go to work today.
Today is Sunday.
Therefore, I don’t have to go to work today.

3. I will go to work either tomorrow or today.
I’m going to stay home today.
Therefore, I will go to work tomorrow.

In each case, we have arrived at a conclusion from the assumption that
some other statements, called premises, are true. For example, the premises in
argument 3 are the statements “I will go to work either tomorrow or today”
and “I’m going to stay home today.” The conclusion is “I will go to work
tomorrow,” and it seems to be forced on us somehow by the premises.

But is this conclusion really correct? After all, isn’t it possible that I’ll stay
home today, and then wake up sick tomorrow and end up staying home again?
If that happened, the conclusion would turn out to be false. But notice that in
that case the first premise, which said that I would go to work either tomorrow
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Deductive Reasoning and Logical Connectives 9

or today, would be false as well! Although we have no guarantee that the
conclusion is true, it can only be false if at least one of the premises is also
false. If both premises are true, we can be sure that the conclusion is also true.
This is the sense in which the conclusion is forced on us by the premises, and
this is the standard we will use to judge the correctness of deductive reasoning.
We will say that an argument is valid if the premises cannot all be true without
the conclusion being true as well. All three of the arguments in our example
are valid arguments.

Here’s an example of an invalid deductive argument:

Either the butler is guilty or the maid is guilty.
Either the maid is guilty or the cook is guilty.
Therefore, either the butler is guilty or the cook is guilty.

The argument is invalid because the conclusion could be false even if both
premises are true. For example, if the maid were guilty, but the butler and the
cook were both innocent, then both premises would be true and the conclusion
would be false.

We can learn something about what makes an argument valid by compar-
ing the three arguments in Example 1.1.1. On the surface it might seem that
arguments 2 and 3 have the most in common, because they’re both about
the same subject: attendance at work. But in terms of the reasoning used,
arguments 1 and 3 are the most similar. They both introduce two possibili-
ties in the first premise, rule out the second one with the second premise, and
then conclude that the first possibility must be the case. In other words, both
arguments have the form:

P or Q.
not Q.
Therefore, P.

It is this form, and not the subject matter, that makes these arguments valid.
You can see that argument 1 has this form by thinking of the letter P as standing
for the statement “It will rain tomorrow,” and Q as standing for “It will snow
tomorrow.” For argument 3, P would be “I will go to work tomorrow,” and Q
would be “I will go to work today.”

Replacing certain statements in each argument with letters, as we have in
stating the form of arguments 1 and 3, has two advantages. First, it keeps us
from being distracted by aspects of the arguments that don’t affect their validity.
You don’t need to know anything about weather forecasting or work habits to
recognize that arguments 1 and 3 are valid. That’s because both arguments have
the form shown earlier, and you can tell that this argument form is valid without
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10 Sentential Logic

even knowing what P and Q stand for. If you don’t believe this, consider the
following argument:

Either the framger widget is misfiring, or the wrompal mechanism is out of
alignment.
I’ve checked the alignment of the wrompal mechanism, and it’s fine.
Therefore, the framger widget is misfiring.

If a mechanic gave this explanation after examining your car, you might still
be mystified about why the car won’t start, but you’d have no trouble following
his logic!

Perhaps more important, our analysis of the forms of arguments 1 and 3
makes clear what is important in determining their validity: the words or and
not. In most deductive reasoning, and in particular in mathematical reasoning,
the meanings of just a few words give us the key to understanding what makes
a piece of reasoning valid or invalid. (Which are the important words in ar-
gument 2 in Example 1.1.1?) The first few chapters of this book are devoted
to studying those words and how they are used in mathematical writing and
reasoning.

In this chapter, we’ll concentrate on words used to combine statements to
form more complex statements. We’ll continue to use letters to stand for state-
ments, but only for unambiguous statements that are either true or false. Ques-
tions, exclamations, and vague statements will not be allowed. It will also be
useful to use symbols, sometimes called connective symbols, to stand for some
of the words used to combine statements. Here are our first three connective
symbols and the words they stand for:

Symbol Meaning

∨ or
∧ and
¬ not

Thus, if P and Q stand for two statements, then we’ll write P ∨ Q to stand
for the statement “P or Q,” P ∧ Q for “P and Q,” and ¬P for “not P” or
“P is false.” The statement P ∨ Q is sometimes called the disjunction of P
and Q, P ∧ Q is called the conjunction of P and Q, and ¬P is called the
negation of P.

Example 1.1.2. Analyze the logical forms of the following statements:

1. Either John went to the store, or we’re out of eggs.
2. Joe is going to leave home and not come back.
3. Either Bill is at work and Jane isn’t, or Jane is at work and Bill isn’t.
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