
Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Why numerical software?

Numerical software is the software used to do computations with real numbers;

that is, with numbers with decimal points in them like π = 3.141 5926 These

kinds computations are commonly of great scientific and engineering importance.

Real numbers can be used to represent physical quantities (position, height, force,

stress, viscosity, voltage, density, etc.). Computation with real numbers can be for

simulating the nuclear processes in the centers of stars, finding the stresses in a

large concrete and steel structure, or for determining how many spheres of unit

radius can touch each other without penetrating. This kind of software is about

quantitative problems. That is, the answers to our questions are not simple yes/no

or red/green/blue answers. They involve continuously varying quantities. But com-

puters can only store a finite number of values. So we have to use an approximation

to real numbers called floating point numbers (described in Chapter 2).

Numerical software is often used for large-scale problems. That is, the number

of quantities that need to be computed is often very large. This happens because we

want to understand what is happening with a continuously varying quantity, such

as stress in a structural column, or flow in a river. These are quantities that vary

continuously with position, and perhaps with time as well. Since we cannot find or

store the values at all infinitely many points in a column or a river, we must use some

sort of discretization. Discretizations are approximations to the true system, which

are usually more accurate when more refined. Refining a discretization means that

we create more quantities to compute. This does not have to go very far (especially

for problems in three dimensions) before we are at the limit of current computers,

including supercomputers.

How large are modern computational tasks? Here is an example. Consider water

flowing through a pipe. If the flow is smooth, then we can use relatively coarse

discretizations, and the scale of the simulation can be kept modest. But if we

have turbulence, then the scale of the turbulent features of the flow are typically

a fraction of a millimeter. To simulate turbulent flow in a pipe that is 5 cm in

3

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Why numerical software?

diameter and 2.5 cm long with a discretization spacing of a tenth of a millimeter

would involve at least 3 × π (25 mm/0.1 mm)3
≈ 147 million unknowns to store

the flow’s velocity. Just to store this would require over a gigabyte of memory (in

double-precision). Unless you can store this in the main memory of a computer

(the memory banks of your computer, but excluding disk drives), your algorithm

is going to be slow. This amount of memory is simply the memory needed to store

the results of the computations. The amount of memory needed for the other data

used in the computation can be equally large or even much larger.

These large-scale problems are computational challenges that require not only

effective and efficient algorithms but also implementations that maximize use of

the underlying hardware.

1.1 Efficient kernels

Since we are trying to compute a large number of quantities, we need our software

to be efficient. This means that the core operations have to be written to execute

quickly on a computer. These core operations are often referred to as kernels.

Since these kernels are executed many, many times in large-scale computations,

it is especially important for them to run efficiently. Not only should the algorithms

chosen be good, but they should also be implementated carefully to make the best

use of the computer hardware.

Current Central Processing Units (CPUs) such as the Intel Pentium 4 chips have

clock speeds of well over a GigaHertz (GHz). In one clock cycle of one nanosecond,

light in a vacuum travels about 30 cm. This is Einstein’s speed limit. For electrical

signals traveling through wires, the speed is somewhat slower. So for a machine

with a 3 GHz Pentium CPU, in one clock cycle, electrical signals can only travel

about 10 cm. To do something as simple as getting a number from memory, we

have to take into account the time it takes for the signal to go from the CPU to

the memory chips, the time for the memory chips to find the right bit of memory

(typically a pair of transistors), read the information, and then send it back to the

CPU. The total time needed takes many clock cycles. If just getting a number from

memory takes many clock cycles, why are we still increasing clock speeds?

To handle this situation, hardware designers include “cache” memory on the

CPU. This cache is small, fast but expensive memory. If the item the CPU wants

is already in the cache, then it only takes one or two clock cycles to fetch it and to

start processing it. If it is not in the cache, then the cache will read in a short block

of memory from the main memory, which holds the required data. This will take

longer, but shouldn’t happen so often. In fact, the cache idea is so good, that they

don’t just have one cache, they have two. If it isn’t in the first (fastest) cache, then it

looks in the second (not-as-fast-but-still-very-fast) cache, and if it isn’t there it will

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Rapid change 5

look for it in main memory. Newer designs add even more levels of cache. If you

want to get the best performance out of your CPU, then you should design your

code to make best use of this kind of hardware.

There is a general trend in the performance of these kinds of electronic compo-

nents that is encapsulated in “Moore’s Law”, which was first put forward in 1965

[81], by Gordon Moore one of the founders of Intel:

the number of transistors on a CPU roughly doubles every eighteen months.

Gordon Moore actually said that the doubling happened every twelve months.

But, averaging over progress from the 1950s to now, the number of transistors on a

“chip” doubles about every eighteen months to two years. This usually means that

the number of operations that can be done on a single CPU also roughly doubles

every eighteen months to two years. But memory speed has not kept up, and data

has to be transfered between the main memory and the CPU. To maintain the speed,

we need to get memory and CPU closer; this is why we have multiple level caches

on CPUs. It also means that if we want to get close to peak performance, we need

to take this structure into account. There will be more on this in Part III.

1.2 Rapid change

As scientists, we are interested in research. That means that we want to go where no-

one has gone before. It means that we want to investigate problems and approaches

no-one else has thought of. We are unlikely to get something profoundly important

on our first try. We will try something, see what happens, and then ask some new

questions, and try to answer those. This means that our software is going to have

to change as we have different problems to solve, and want to answer different

questions. Our software will have to change quickly.

Rapidly changing software is a challenge. Each change to a piece of software

has the chance to introduce bugs. Every time we change an assumption about what

we are computing, we have an even bigger challenge to modify our software, since

it is easy to build in bad or restrictive assumptions into our software.

The challenge of rapidly changing software is not unique to research, but it

is particularly important here. In numerical analysis, a great deal of thought has

gone into designing algorithms and the principles behind them. The algorithms

themselves, though, have often been fairly straightforward. However, that has been

changing. Consider Gaussian elimination or LU factorization for solving a linear

system of equations. The standard dense LU factorization routine is fairly easy to

write out in pseudo-code or in your favorite programming language. A great deal of

analysis has gone into this algorithm regarding the size and character of the errors

in the solution. But the algorithm itself is quite straightforward. Even when we add

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Why numerical software?

pivoting techniques, there is much more to the analysis than the algorithm. But

with the increasing importance of sparse matrices with general sparsity patterns,

the algorithms become much more complicated. Current algorithms for solving

sparse linear systems are supernodal multifrontal algorithms that use combinato-

rial data structures (elimination trees) that must be constructed using moderately

sophisticated techniques from Computer Science. You can write a standard LU fac-

torization routine with partial pivoting in an afternoon in almost any programming

language. But current supernodal multifrontal algorithms require much more care

to implement. This trend to increasing sophistication and complexity can also be

seen in the development of finite element software, ordinary differential equation

solvers, and other numerical software. When we start bringing together different

pieces of software to solve larger problems, we should realize that we have a large

software system, and it should be treated as such. Writing your own (from scratch)

is no longer an option.

1.3 Large-scale problems

Problems in scientific computing usually involve large amounts of computation.

These are called large-scale problems or large-scale computations. This can be

because the problem requires a large amount of data (such as signal processing),

produces a large amount of data (such as solving a partial differential equation), or is

simply very complex (some global optimization problems are like this). Some tasks,

such as weather forecasting, may both require and produce large amounts of data.

1.3.1 Problems with a lot of data

Signal processing is an area where vast amounts of data must be processed, often in

real time – such as digital filtering of telephone signals, transforming digital video

signals, or processing X-ray data in computerized tomography to get pictures of

the inside of human bodies. Real-time constraints mean that the processing must

be very rapid. Often specialized hardware is used to carry this out, and perhaps

fixed-point rather than floating-point arithmetic must be used.

Other situations which do not have real-time constraints are seismic imaging,

where pictures of the rock layers under the ground are obtained from recordings of

sounds picked up by buried sensors. The amount of data involved is very large. It

needs to be, in order to obtain detailed pictures of the structure of the rock layers.

In addition to the usual numerical and programming issues, there may be ques-

tions about how to store and retrieve such large data sets. Part of the answers to such

questions may involve database systems. Database systems are outside the scope

of this book, but if you need to know more, you might look at [26].

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3 Large-scale problems 7

Many problems, such as finding the air flow around a Boeing 747, produce a great

deal of data. After the relevant partial differential equations have been discretized,

there are large systems of nonlinear equations that need to be solved. And the

answer involves a great deal of data. Part of the problem here is making sense of the

answer. Often the best way to describe the answer is to use computer visualization

techniques to paint a picture of the airflow. Moving pictures can be rotated, shifted

and moved enable aeronautical engineer to study different aspects of the problem.

Computer visualization is outside the scope of this book, but if you need something

like that, some good references are [37, 51, 68].

1.3.2 Hard problems

Sometimes, the data for the problem, and the data produced, are not very large,

but solving the problem can involve an enormous amount of time. This can easily

be the case in global optimization, where there can be very large numbers of local

minima, but only one global minimum. Finding all the local minima and comparing

them to find the best – the global minimum – can be like looking for a needle in

a haystack. These problems are often closely related to combinatorial problems

(problems which can be described in terms of integers rather than real numbers).

Sometimes combinatorial methods can solve these problems efficiently, but often,

continuous optimization methods are an essential part of the solution strategy.

Another area where there are hard problems which do not necessarily involve a

lot of data are highly nonlinear problems. Highly nonlinear problems can have, or

appear to have, many possible solutions. Perhaps only one or a few of the solutions

is really useful. Again we have a problem of finding a “needle in a haystack”.

www.cambridge.org/9780521675956
www.cambridge.org

