Contents

Foreword
1 xi

1 **Particles and their interactions in relativistic quantum mechanics**
 1.1 The propagator
 1.2 The Green function
 1.2.1 The Green function for a system of particles
 1.2.2 The momentum representation
 1.2.3 Virtual particles
 1.3 The scattering amplitude
 1.3.1 How to calculate physical observables
 1.3.2 Poles in the scattering amplitude and the bound states
 1.4 The electromagnetic field
 1.5 Photons in an ‘external field’
 1.5.1 Relativistic propagator
 1.5.2 Relativistic interaction
 1.5.3 Relativistic Green function
 1.5.4 Propagation of vector photons
 1.6 Free massive relativistic particles
 1.7 Interactions of spinless particles
 1.8 Interaction of spinless particles with the electromagnetic field
 1.9 Examples of the simplest electromagnetic processes
 1.9.1 Scattering of charged particles
 1.9.2 The Compton effect (photon–π-meson scattering)
 1.10 Diagrams and amplitudes in momentum representation
 1.10.1 Photon emission amplitude in momentum space
 1.10.2 Meson–meson scattering via photon exchange
 1.10.3 Feynman rules

vii
Contents

1.11 Amplitudes of physical processes 59
1.11.1 The unitarity condition 61
1.11.2 S-matrix 61
1.11.3 Invariant scattering amplitude 65
1.11.4 Cross section 65
1.11.5 $2 \rightarrow 2$ scattering 67
1.11.6 $\pi^-\pi^-$ scattering 68
1.11.7 $\pi^+\pi^-$ scattering 71
1.12 The Mandelstam plane 75
1.13 The Compton effect (for π-mesons) 80

2 Particles with spin $\frac{1}{2}$. Basic quantum electrodynamic processes 85
2.1 Free particles with spin $\frac{1}{2}$ 85
2.2 The Green function of the electron 98
2.3 Matrix elements of electron scattering amplitudes 100
2.4 Electron–photon interaction 102
2.5 Electron–electron scattering 105
2.5.1 Connection between spin and statistics 106
2.5.2 Electron charge 111
2.6 The Compton effect 112
2.6.1 Compton scattering at small energies 121
2.6.2 Compton scattering at high energies 123
2.7 Electron–positron annihilation into two photons 125
2.7.1 Annihilation near threshold 128
2.7.2 e^+e^- annihilation at very high energies 128
2.8 Electron scattering in an external field 130
2.9 Electron bremsstrahlung in an external field 132
2.9.1 Emission of a soft photon by a low energy electron 133
2.9.2 Soft radiation off a high energy electron 135
2.10 The Weizsäcker–Williams formula 137

3 General properties of the scattering amplitude 144
3.1 Symmetries in quantum electrodynamics 144
3.1.1 P-conservation 144
3.1.2 T-invariance 147
3.1.3 C-invariance 150
3.2 The CPT theorem 153
3.2.1 PT-invariant amplitudes 155
3.3 Causality and unitarity 156
3.3.1 Causality 156
3.3.2 Analytic properties of the Born amplitudes 160
3.3.3 Scattering amplitude as an analytic function 162
Contents

3.3.4 Unitarity 164
3.3.5 Born amplitudes and unitarity 167
3.3.6 How to restore perturbation theory on the basis of unitarity and analyticity, or perturbation theory without Feynman graphs 170

4 Radiative corrections. Renormalization 174
4.1 Higher order corrections to the electron and photon Green functions 174
4.1.1 Multiloop contributions to the electron Green function 174
4.1.2 Multiloop contributions to the photon Green function 179
4.2 Renormalization of the electron mass and wave function 182
4.3 Renormalization of the photon Green function 187
4.4 Feynman rules for multiloop scattering amplitudes 192
4.5 Renormalization of the vertex part 193
4.6 The generalized Ward identity 199
4.7 Radiative corrections to electron scattering in an external field 202
4.7.1 One-loop polarization operator 204
4.7.2 One-loop vertex part 213
4.8 The Dirac equation in an external field 221
4.8.1 Electron in the field of a supercharged nucleus 230
4.9 Radiative corrections to the energy levels of hydrogen-like atoms. The Lamb shift 234

5 Difficulties of quantum electrodynamics 241
5.1 Renormalization and divergences 241
5.1.1 Divergences of Feynman diagrams 242
5.1.2 Renormalization 249
5.2 The zero charge problem in quantum electrodynamics 258

References 267
Index 268