Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>References</td>
<td>4</td>
</tr>
<tr>
<td>2 Theory of acid–base cements</td>
<td>5</td>
</tr>
<tr>
<td>2.1 General</td>
<td>5</td>
</tr>
<tr>
<td>2.2 The formation of cements</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Classification</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Requirements for cementitious bonding</td>
<td>8</td>
</tr>
<tr>
<td>2.2.3 Gelation</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Acid–base concepts</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 General</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2 History of acid–base concepts</td>
<td>12</td>
</tr>
<tr>
<td>2.3.3 Acid–base concepts in AB cement chemistry</td>
<td>14</td>
</tr>
<tr>
<td>2.3.4 Relevance of acid–base theories to AB cements</td>
<td>19</td>
</tr>
<tr>
<td>2.3.5 Acid–base strength</td>
<td>20</td>
</tr>
<tr>
<td>2.3.6 Acid–base classification</td>
<td>22</td>
</tr>
<tr>
<td>2.3.7 Hard and soft acids and bases (HSAB)</td>
<td>24</td>
</tr>
<tr>
<td>References</td>
<td>26</td>
</tr>
<tr>
<td>3 Water and acid–base cements</td>
<td>30</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>30</td>
</tr>
<tr>
<td>3.1.1 Water as a solvent</td>
<td>30</td>
</tr>
<tr>
<td>3.1.2 Water as a component</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Water</td>
<td>31</td>
</tr>
<tr>
<td>3.2.1 Constitution</td>
<td>31</td>
</tr>
<tr>
<td>3.2.2 Water compared with other hydrides</td>
<td>33</td>
</tr>
<tr>
<td>3.3 The structure of water</td>
<td>34</td>
</tr>
<tr>
<td>3.3.1 The concept of structure in the liquid state</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2 The structures of ice</td>
<td>35</td>
</tr>
<tr>
<td>3.3.3 Liquid water</td>
<td>36</td>
</tr>
<tr>
<td>3.4 Water as a solvent</td>
<td>40</td>
</tr>
</tbody>
</table>
Contents

3.4.1 Hydrophobic interactions 40
3.4.2 Dissolution of salts 41
3.4.3 Ion–ion interactions in water 44
3.4.4 Dissolution of polymers 45
3.5 Hydration in the solid state 47
3.5.1 Coordination of water to ions 47
3.6 The role of water in acid–base cements 48
3.6.1 Water as a solvent in AB cements 48
3.6.2 Water as a component of AB cements 48
3.6.3 Water as plasticizer 51
References 52

4 Polyelectrolytes, ion binding and gelation 56
4.1 Polyelectrolytes 56
4.1.1 General 56
4.1.2 Polyion conformation 58
4.2 Ion binding 59
4.2.1 Counterion binding 59
4.2.2 The distribution of counterions 59
4.2.3 Counterion condensation 63
4.2.4 Effect of valence and size on counterion binding 65
4.2.5 Site binding – general considerations 67
4.2.6 Effect of complex formation 69
4.2.7 Effect of the polymer characteristics on ion binding 70
4.2.8 Solvation (hydration) effects 72
4.2.9 Hydration of the polyion 73
4.2.10 Hydration and ion binding 76
4.2.11 Desolvation and precipitation 77
4.2.12 Conformational changes in polyions 79
4.2.13 Interactions between polyions 82
4.2.14 Polyion extensions, interactions and precipitation 82
4.3 Gelation 83
References 85

5 Polyalkenoate cements 90
5.1 Introduction 90
5.2 Adhesion 92
5.2.1 New attitudes 92
5.2.2 The need for adhesive materials 92
5.2.3 Acid-etching 93
5.2.4 Obstacles to adhesion 93
5.2.5 The nature of the adhesion of polyalkenoates to tooth material 94
5.3 Preparation of poly(alkenoic acid)s 97
5.4 Setting reactions 98
Contents

5.5 Molecular structures 99
5.6 Metal oxide polyelectrolyte cements 101
5.7 Zinc polycarboxylate cement 103
 5.7.1 Historical 103
 5.7.2 Composition 103
 5.7.3 Setting and structure 104
 5.7.4 Properties 106
 5.7.5 Modified materials 112
 5.7.6 Conclusions 113
5.8 Mineral ionomer cements 113
5.9 Glass polyalkenoate (glass–ionomer) cement 116
 5.9.1 Introduction 116
 5.9.2 Glasses 117
 5.9.3 Poly(alkenoic acid)s 131
 5.9.4 Reaction-controlling additives 133
 5.9.5 Setting 134
 5.9.6 Structure 143
 5.9.7 General characteristics 146
 5.9.8 Physical properties 147
 5.9.9 Adhesion 152
 5.9.10 Erosion, ion release and water absorption 156
 5.9.11 Biocompatibility 159
 5.9.12 Modified and improved materials 162
 5.9.13 Applications 166
5.10 Resin glass polyalkenoate cements 169
 5.10.1 General 169
 5.10.2 Class I hybrids 170
 5.10.3 Class II hybrids 171
 5.10.4 Properties 173
References 175

6 Phosphate bonded cements 197
 6.1 General 197
 6.1.1 Orthophosphoric acid solutions 197
 6.1.2 Cations in phosphoric acid solutions 198
 6.1.3 Reactions between oxides and phosphoric acid solutions 201
 6.1.4 Effect of cations in phosphoric acid solutions 203
 6.1.5 Important cement-formers 204
 6.2 Zinc phosphate cement 204
 6.2.1 General 204
 6.2.2 History 204
 6.2.3 Composition 205
 6.2.4 Cement-forming reaction 207
 6.2.5 Structure 212
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.6</td>
<td>Properties</td>
<td>214</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Factors affecting properties</td>
<td>218</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Biological effects</td>
<td>219</td>
</tr>
<tr>
<td>6.2.9</td>
<td>Modified zinc phosphate cements</td>
<td>219</td>
</tr>
<tr>
<td>6.2.10</td>
<td>Hydrophosphate cements</td>
<td>220</td>
</tr>
<tr>
<td>6.3</td>
<td>Transition-metal phosphate cements</td>
<td>220</td>
</tr>
<tr>
<td>6.4</td>
<td>Magnesium phosphate cements</td>
<td>222</td>
</tr>
<tr>
<td>6.4.1</td>
<td>General</td>
<td>222</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Composition</td>
<td>222</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Types</td>
<td>222</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Cement formation and properties</td>
<td>223</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Cement formation with phosphoric acid</td>
<td>223</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Cement formation with ammonium dihydrogen phosphate</td>
<td>223</td>
</tr>
<tr>
<td>6.4.7</td>
<td>Cement formation with diammonium hydrogen phosphate</td>
<td>231</td>
</tr>
<tr>
<td>6.4.8</td>
<td>Cement formation with ammonium polyphosphate</td>
<td>232</td>
</tr>
<tr>
<td>6.4.9</td>
<td>Cement formation with aluminium acid phosphate</td>
<td>232</td>
</tr>
<tr>
<td>6.4.10</td>
<td>Cements formed from magnesium titanates</td>
<td>235</td>
</tr>
<tr>
<td>6.5</td>
<td>Dental silicate cement</td>
<td>235</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Historical</td>
<td>235</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Glasses</td>
<td>237</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Liquid</td>
<td>241</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Cement-forming reaction</td>
<td>243</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Structure</td>
<td>249</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Physical properties</td>
<td>253</td>
</tr>
<tr>
<td>6.5.7</td>
<td>Dissolution and ion release</td>
<td>255</td>
</tr>
<tr>
<td>6.5.8</td>
<td>Biological aspects</td>
<td>260</td>
</tr>
<tr>
<td>6.5.9</td>
<td>Conclusions</td>
<td>261</td>
</tr>
<tr>
<td>6.5.10</td>
<td>Modified materials</td>
<td>262</td>
</tr>
<tr>
<td>6.6</td>
<td>Silicophosphate cement</td>
<td>263</td>
</tr>
<tr>
<td>6.7</td>
<td>Mineral phosphate cements</td>
<td>265</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>265</td>
</tr>
</tbody>
</table>

7 Oxysalt bonded cements

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Components of oxysalt bonded cements</td>
<td>284</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Setting of oxysalt bonded cements</td>
<td>284</td>
</tr>
<tr>
<td>7.2</td>
<td>Zinc oxysalt chloride cements</td>
<td>285</td>
</tr>
<tr>
<td>7.2.1</td>
<td>History</td>
<td>285</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Recent studies</td>
<td>286</td>
</tr>
<tr>
<td>7.3</td>
<td>Magnesium oxysalt chloride cements</td>
<td>290</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Uses</td>
<td>290</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Calcination of oxide</td>
<td>290</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Setting chemistry</td>
<td>291</td>
</tr>
</tbody>
</table>
Contents

7.3.4 Kinetics of cementation

7.3.5 Phase relationships in the $\text{MgO} - \text{MgCl}_2 - \text{H}_2\text{O}$ system

7.3.6 Consequences for practical magnesium oxychloride cements

7.3.7 Impregnation with sulphur

7.4 Magnesium oxysulphate cements

7.4.1 Setting chemistry

7.4.2 Phase relationships in the $\text{MgO} - \text{MgSO}_4 - \text{H}_2\text{O}$ system

7.4.3 Mechanical properties of magnesium oxysulphate cements

7.5 Other oxysalt bonded cements

References

8 Miscellaneous aqueous cements

8.1 General

8.2 Miscellaneous aluminosilicate glass cements

8.3 Phytic acid cements

8.4 Poly(vinylphosphonic acid) cements

8.4.1 Metal oxide polyphosphonate cements

8.4.2 Glass polyphosphonate cements

8.5 Miscellaneous copper oxide and cobalt hydroxide cements

References

9 Non-aqueous cements

9.1 General

9.2 Zinc oxide eugenol (ZOE) cements

9.2.1 Introduction and history

9.2.2 Eugenol

9.2.3 Zinc oxide

9.2.4 Cement formation

9.2.5 Setting

9.2.6 Structure

9.2.7 Physical properties

9.2.8 Biological properties

9.2.9 Modified cements

9.2.10 Impression pastes

9.2.11 Conclusions

9.3 Improved ZOE cements

9.3.1 General

9.3.2 Reinforced cements

9.4 2-ethoxybenzoic acid eugenol (EBA) cements

9.4.1 General

9.4.2 Development

9.4.3 Setting and structure
Contents

9.4.4 Properties 340
9.5 EBA–methoxyhydroxybenzoate cements 342
9.5.1 EBA–vanillic acid and EBA–syringic acid cements 342
9.5.2 EBA–divanillic acid and polymerized vanillic acid cements 344
9.5.3 EBA–HV polymer cements 345
9.5.4 Conclusions 346
9.5.5 Other zinc oxide cements 347
9.6 Calcium hydroxide chelate cements 347
9.6.1 Introduction 347
9.6.2 Composition 348
9.6.3 Setting 348
9.6.4 Physical properties 350
9.6.5 Biological properties 350
9.6.6 The calcium hydroxide dimer cement 351
References 352

10 Experimental techniques for the study of acid–base cements 359
10.1 Introduction 359
10.2 Chemical methods 360
10.2.1 Studies of cement formation 360
10.2.2 Degradative studies 361
10.3 Infrared spectroscopic analysis 361
10.3.1 Basic principles 361
10.3.2 Applications to AB cements 362
10.3.3 Fourier transform infrared spectroscopy 364
10.4 Nuclear magnetic resonance spectroscopy 364
10.4.1 Basic principles 364
10.4.2 Applications to AB cements 365
10.5 Electrical methods 366
10.6 X-ray diffraction 367
10.6.1 Basic principles 367
10.6.2 Applications to AB cements 368
10.7 Electron probe microanalysis 369
10.7.1 Basic principles 369
10.7.2 Applications to dental silicate cements 369
10.7.3 Applications to glass–ionomer cements 369
10.8 Measurement of mechanical properties 370
10.8.1 Compressive strength 371
10.8.2 Tensile compressive strength 372
10.8.3 Flexural strength 372
10.8.4 Fracture toughness 373
10.9 Setting and rheological properties 374
10.9.1 Problems of measurement 375
10.9.2 Methods of measurement 375
Contents

10.10 Erosion and leaching .. 378
10.10.1 Importance in dentistry .. 378
10.10.2 Studies of erosion .. 379
10.11 Optical properties ... 379
10.11.1 Importance in dentistry .. 379
10.11.2 Measurement of opacity ... 380
10.12 Temperature measurement .. 380
10.13 Other test methods .. 381
References ... 382

Index

386
xv