Phosphate deposits of the world

VOLUME 2

Phosphate rock resources
Phosphate deposits of the world

VOLUME 2

Phosphate rock resources

EDITED BY
A.J.G. NOTHOLT,
R.P. SHELDON AND
D.F. DAVIDSON

International Geological Correlation Programme
Project 156:
Phosphorites
Contents

List of contributors xix
Preface xxiii
Acknowledgements xxvii

1 North America and Greenland – introduction 1
 Sedimentary resources 1
 Precambrian 1
 Palaeozoic 1
 Mesozoic 2
 Palaeogene 3
 Neogene 3
 Igneous resources 3
 Production 4
 References 5

2 The phosphate deposits of Tennessee, USA 6
 J.B. CATHCART
 Name 6
 Location 6
 Geology and stratigraphy 6
 Carters Limestone 6
 Hermitage Formation 6
 Bigby–Cannon Limestone 6
 Cateys Formation 6
 Leipers Limestone 7
 Distribution and origin of phosphate in the Ordovician
 limestones 8
 White rock 8
 Blue rock 8
 Brown rock 8
 Mineralogy 10
 White rock 10
 Blue rock 10
 Brown rock 10
 Phosphatic limestone 11
 Chemical characteristics 11
 White rock 11
 Blue rock 11
 Brown rock 11
 Phosphatic limestones 12
 Reserves and resources 12
 Production 12
 White rock 12
 Blue rock 12
Brown rock 12
Phosphatic limestone 12
References 12

3 Triassic phosphate deposits, north-eastern Alaska, USA 14
R.L. DETTERMAN
Name and location 14
General geology 14
Stratigraphy 14
Age 16
Sedimentation 16
Tectonics 16
Resources 16
References 17

4 Deep-water phosphorite in the early Carboniferous Deseret starved basin, Utah, USA 18
C.A. SANDBERG and R.C. GUTSCHICK
Name 18
Location 18
General geology 18
Stratigraphy 18
Stratigraphic names 18
Stratigraphy 20
Palaeontology 21
Metamorphism 21
Rock chemistry 21
Phosphorite occurrence and petrography 21
Age 22
Sedimentation 22
Tectonics 22
Resources 22
References 22

5 Geology and resources of Miocene Coast Ranges and Cenozoic Offshore Continental Shelf phosphate deposits of California, USA 24
A.E. ROBERTS
Introduction 24
Southern Coast Ranges 24
Stratigraphy 24
Tectonics 26
Phosphate deposits 26
Wilson Corner deposit 26
Resources at Wilson Corner 26
Chico Martinez Creek deposit 27
Resources at Chico Martinez Creek 28
Cuyama Valley deposit 28
Resources at Cuyama Valley 30
Pine Mountain deposit 30
Resources at Pine Mountain 31
Continental Borderland 31
Stratigraphy 31
Tectonics 33
Phosphate deposits 33
References 34

6 Cargill Carbonatite Complex, Canadian Precambrian Shield 36
G. ERDOSH
Name and location 36
General geology 36
Overburden 36
Quartz dioritic gneiss 36
Pyroxene-amphibolite 36

7 Contact zone 36
Carbonatite 37
Residuum 37
Cemented residuum 38
Structure 38
Primary complex 38
Residuum 39
Age 40
Tectonics 40
Resources 40
By-products 41
References 41

8 Phosphate deposits of the North Carolina coastal plain, continental shelf, and adjacent Blake Plateau, USA 42
S.R. RIGGS
Location 42
Names and ages 42
Regional structural framework 42
Stratigraphic framework 43
Sedimentation 46
Distribution of phosphate types 46
Phosphate resources 46
North Carolina coastal plain 46
North Carolina continental shelf 47
Blake Plateau 48
Summary 48
By-product resources 48
Trace elements 48
Uranium 49
Phosphogypsum 50
References 50

8 Phosphate deposits of the Phosphoria Formation, western United States 53
R.P. SHELDON
Introduction 53
Name and location 53
General geology 53
Stratigraphy 53
Palaeontology 53
Sedimentary structures 55
Rock chemistry of average phosphorite 55
Petrographic description 55
Phosphate mineralogy 56
Age 56
Sedimentation 56
Global setting 56
Local setting 56
Tectonics 58
Local structural setting 58
Tectonic setting 58
Plate tectonics 59
Resources 59
Thickness and grade of mineable beds 59
Identified resources and reserve base 59
Chemical characteristics 59
Production 59
By-products 60
References 60

8 The phosphate deposits of Florida, with a note on the deposits in Georgia and South Carolina, USA 62
J.B. CATHCART
Name 62
Contents

Location 62
 River-pebble 62
 Hardrock 62
 Land-pebble 62
 Sand-size phosphate of the Hawthorn Formation 62
Stratigraphy 63
 Eocene Series 64
 Ocala Limestone 64
 Oligocene Series 64
 Suwannee Limestone 64
 Miocene Series 64
 Tampa Limestone 64
 Hawthorn Formation 64
 Unnamed upper Miocene formation 65
 Bone Valley Formation 65
 Alachua Formation 65
 Post-Miocene rocks 66
Structure 66
 The phosphate deposits 66
 River-pebble 66
 Land-pebble 66
 Hardrock 67
 Sand-size deposits of the Hawthorn Formation 68
Chemistry 68
 Phosphate resources 68
 River-pebble 68
 Hardrock 68
 Land-pebble 68
 Sand-size phosphate of the Hawthorn Formation 69
 Phosphate deposits of Georgia and South Carolina 69
By-products 69
 References 69
10 The Martinson Carbonatite deposit, Ontario, Canada 71
 P. POTAPOFF
 Introduction and history 71
 General geology 71
 Detailed geology and mineralogy 72
 P₂O₅, CaO, and La₂O₃ distribution 77
 Chemical characteristics 77
 Ore reserves 77
 References 78
11 Jurassic phosphorite of the Fernie syenolirion, south-
 eastern British Columbia, Canada 79
 R.L. CHRISTIE
 Name and location 79
 General geology 79
 Stratigraphy 79
 Age 81
 Sedimentation 81
 Tectonics 81
 Resources 82
 Economic geology 82
 References 83
12 Apatite mineralisation in the Qaarsuq Carbonatite
 Complex, southern West Greenland 84
 C. KNUDSEN
 Name 84
 Location 84
 General geology 84
 Petrography 84
 The fenite 84
 Hydrothermal alteration 85

Age 85
 Tectonics 85
 Resources 86
 Genesis 86
 By-products 86
 References 86
13 Phosphate resources in the Sarfattuq Carbonatite Complex,
 southern West Greenland 87
 K. SECHER
 Name 87
 Location 87
 General geology 87
 Petrography and mineralogy 87
 Genesis 87
 Age 87
 Tectonics 88
 Resources 88
 Production 89
 By-products 89
 References 89
14 South America – introduction 90
 Sedimentary resources 90
 Precambrian 90
 Palaeozoic 90
 Mesozoic 90
 Neogene 92
 Igneous resources 92
 Production 93
 References 93
15 The Paulista phosphate deposit in Pernambuco State,
 Brazil 95
 G. DE A.S.C. DE ALBUQUERQUE AND J.F. GIANNERINI
 Introduction 95
 General geology 95
 Stratigraphy 96
 Basement rocks 96
 Cretaceous to Palaeocene sequence 96
 Phosphate deposits 98
 Resources 98
 Production 98
 References 99
16 The Patos do Minas phosphate deposit, Minas Gerais,
 Brazil 100
 E.C. DAMASCENO
 Name 100
 Location 100
 Regional geology 100
 Geology of the Rocinha mine 100
 Mineralogy 102
 Age 102
 Resources 102
 Production 102
 References 103
17 The phosphate deposit of Catalão I Ultramafic Alkaline
 Complex, Goiás, Brazil 104
 W.T. CARVALHO AND S.R. BRESSAN
 Name 104
 Location 104
 General geology 104
 Local geology 104
 Age 106
Contents

18 The Jacupiranga apatite deposit, São Paulo, Brazil 111
H. BORN
Name and location 111
General geology 111
The carbonatites 112
Age 113
Origin 113
Tectonics 114
Resources 114
Production 114
References 115

19 The Ipanema phosphate deposit, São Paulo, Brazil 116
H. BORN
Name and location 116
General geology 116
Primary apatite mineralisation 116
The weathered phosphate deposit 118
Age 118
Origin 118
Tectonics 119
Resources 119
References 119

20 Phosphate deposits of the Caleta Herreadura Formation, Mejillones Peninsula, Chile 120
E. VALDEBENITO M.
Name and location 120
General geology and stratigraphy 120
Palaeontology and age 121
Mineralogy and petrography of phosphatic rocks 121
Tectonics 122
Sedimentation and palaeogeography 122
Resources 122
References 122

21 Geology of the phosphate deposits at Sechura, Peru 123
G.H. McCLELLAN
Introduction 123
Location and geographic setting 123
General geology 123
Stratigraphy 123
Miocene phosphate-bearing strata 123
Lower Diatomite and Phosphorite member 125
Tuffaceous Diatomite 125
Diana ore zone 125
Diana ore zone – Western Sechura Depression 125
Diana ore zone – Bayovar area 125
Gray Tuff 126
Clam Bore Sandstone member 126
Upper Diatomite and Phosphorite member 127
Zero ore zone 128
Inca Diatomite 128
Minerva ore zone 128
Quebrada Diatomite 128
Barren Diatomite member 128
Piocone coquina, sand and shale 128
Recent loose sand, alluvium and windblown sand 128
Structure 128
Petrography 129
Diatomite 129

viii

22 Phosphorites in the Mantoaro Phosphate Field, central Andes, Peru 131
L.T. GROSE
Name 131
Location 131
General geology 131
Regional stratigraphy 131
Pucará Group 131
Chambara Formation 131
Aramachay Formation 132
Condorsinga Formation 134
The phosphatic rocks 134
Stratigraphy 134
Petrography 135
Resources 136
References 136

23 Phosphorite deposits of Venezuela 137
S.E. RODRÍGUEZ
Introduction 137
Cretaceous phosphorite deposits 137
General geology 137
Black Cretaceous phosphorite deposits 138
Stratigraphy 138
Palaeontology and age 140
Petrographic description 140
Sedimentation 140
Resources 140
Production 142
White arenaceous Cretaceous deposits 142
Stratigraphy and palaeontology 142
Petrographic description 142
Sedimentation 142
Resources 143
Miocene phosphorite deposits 143
Stratigraphy 143
Palaeontology and age 144
Petrographic description 144
Sedimentation 145
Resources and production 145
References 145

24 Phanerozoic sedimentary phosphatic rocks of Argentina 147
H.A. LEANZA, A.T. SPIEGELMAN, C.A. HUGO, O.O. MASTANDREA AND C.J. OBLITAS
Introduction 147
Palaeozoic 147
Ordovician phosphates 147
Silurian and Lower Devonian phosphates 151
Silurian-Devonian phosphates 151
Mesozoic 151
Triassic continental phosphates 151
Jurassic-Cretaceous boundary phosphates 153
Upper Cretaceous phosphatic anomalies 153
Cenozoic 153
Late Palaeocene phosphates 156
Eocene-Oligocene phosphates 156
Recent guano deposits 156
Offshore phosphates 158
Contents

References 158

25 Proterozoic phosphorite in the Bakhuis Mountains, Surinam 159
E.H. Dahlberg
Name and location 159
General geology 159
Stratigraphy 159
Age 159
Mineralogy and geochemistry 159
Petrographic description 159
Depositional environment 160
Tectonics 161
Resources 162
References 162

26 Africa – introduction 164
Sedimentary resources 164
Precambrian–Palaeozoic 164
Mesozoic–Palaeogene 164
Neogene–Quaternary 166
Igneous resources 167
Kenya 167
Malawi 167
Tanzania 168
Mozambique 168
Zaire 168
Production 168
References 169

27 Dorowa and Shawa: late Palaeozoic to Mesozoic carbonate complexes in Zimbabwe 171
T.R.C. Fernandes
Name 171
Location 171
General geology 171
Age 171
Tectonics 171
Lithology 171
Country rocks 171
Fenites 171
Iolites, foilies and malgnites 172
Carbonatites 174
Apatite and associated rocks 174
Petrogenesis 174
Resources 174
References 175

28 The Bu-Craa phosphate deposit, Western Sahara, Morocco 176
C. Muñoz Cabezón
Introduction 176
General geology 176
Stratigraphy 176
Upper Cretaceous 176
Palaeocene 177
Lower Palaeocene phosphatic series 177
Plastic clay series 177
Upper series of silexite and silex 177
Rock chemistry of the phosphorite 177
Petrographic description 177
Sedimentation 178
Silex 178
Silexite 179
Shale 181
Phosphorite facies 181

ix

29 The Sukulu phosphate deposits, south-eastern Uganda 184
F.A. Kabagambe-Kaliisa
Name 184
Location 184
General geology 184
Tectonic setting and mode of emplacement 184
Age 185
Apatite deposits 185
Resources 186
Production and beneficiation 186
References 186

30 A review of an Egyptian Late Cretaceous phosphate deposits 187
B. Issawi
Name and location 187
General geology 187
Stratigraphy 187
Red Sea 187
Nile Valley 188
Western Desert (New Valley) 189
Mineralogy and chemistry 190
Age 190
Sedimentation 191
Tectonics 191
Resources 191
Production 192
References 192

31 The Abu Tartur phosphate deposit, Western Desert, Egypt 194
T. Schröter
Name 194
Location 194
General geology 194
Stratigraphy 194
Lithology 196
Mineralogy 196
Sedimentation 197
Tectonics 197
Resources 197
By-products 198
References 198

32 Onshore sedimentary phosphate deposits in south-western Africa 200
Q.B. Hendey and R.V. Dingle
Name 200
Location 200
General geology 200
Stratigraphy 200
Terminology 200
Lithostratigraphy 201
Palaontology 202
Phosphate mineralogy and chemistry 203
Age 203
Sedimentation 203
Depositional processes and environments 203
Palaeoecography 204
Resources 204
Varswater 204
Contents

33 Baards Quarry and Old Varswater Quarry 204
Sandheuwel 204
Paternoster 204
Duyker Eiland 205
Constable Hill 205
Elandsfontein and Hoedjiespunt 205
References 205

33 The Eocene phosphorite deposits of Bofal and Loubboira, Mauritania 207
A. BOUDI AND EL HOUSSEIN OULD JIDDOU
Name and location 207
General geology 207
Stratigraphy 207
Paleontology and age 208
Petrography, sedimentation and palaeogeography 208
Structural framework 211
Resources 211
Thickness and grade of mineable bed 211
Reserves and resources 211
Probable resources 211
Identified resources 211
Inferred resources 211
Chemical characteristics 211
Run-of-the-mine ore 211
Concentrate 211
By-products 213
Bibliography 213

34 Phosphorites of the northern Volta Basin (Burkina Faso, Niger and Benin) 214
R. TROMPETTE
Name and location 214
General geology 215
Stratigraphy 215
General stratigraphy 215
Kodjari Formation 215
Kodjari and Arli phosphorites 216
Tapoa and Mekrou Bend phosphorites 216
Aloub Djouana phosphorites 217
Age 217
Sedimentation 217
Resources 218
References 218

35 The Kodjari and Aloub Djouana phosphate deposits, Burkina Faso 219
G. MAURIN, D. Giot, G. SUSTRA and E. ZOUNGRANA
Introduction 219
General geology of the Kodjari phosphate deposit 220
Basal sequence 220
The phosphate series 220
Members overlying the phosphate series 222
Recent alteration 223
Tectonics 223
Grades 223
Reserves 223
Sedimentology and mineralogy 223
Conclusion 224
References 225

36 Eocene Tlemci phosphorite deposits, eastern Mali 226
M. PASCAL AND H. TRAORE
Name and location 226
General geomorphologic and palaeogeographic setting 226
Discovery and development 227

37 General geology 227
The phosphatic formations 227
Characterisation of the Lutetian phosphatic deposits 228
Macrofacies and grain size 228
Mineralogical nature 228
Chemical composition 229
Geographical distribution of the phosphatic formations 229
Tlemci right (west) bank 229
Tlemci left (east) bank 229
Southern border of the Adrar des Iforas 229
Pre-Lutetian phosphatic formations 231
Palaontology 231
Paleoecography 231
Diagenesis, alteration and reworking 231
Resources 232
References 232

38 Phosphorite deposits of Senegal 233
M. PASCAL AND G. SUSTRA
Introduction 233
History of phosphate exploration 233
West Senegal 235
General stratigraphy 235
Aluminium phosphate, Thiès 236
Pire Goureye 239
Casamance 239
Stratigraphy 239
Senegal River: Ouali-Dinla (Matam) 240
Stratigraphy 240
East Senegal 'Cambrian' phosphate 242
References 245

38 Igneous phosphate resources in Zambia 247
D.C. TURNER, L.S. ANDERSEN, S.N. PUNUKOLU, A. SLIWA AND F. TEMBO
Introduction 247
Nkombwa Hill 247
Name 247
Location 247
General geology 248
Age 249
Petrogenesis 250
Tectonics 250
Resources 250
Kaluwe 251
Name 251
Location 251
General geology 251
Age 252
Emplacement of the Kaluwe carbonatite 252
Tectonics 252
Resources 253
Chilembwe 253
Name 253
Location 253
General geology 253
Age 255
Origin of the apatite ores 255
Tectonics 255
Resources 255
Mumbwa North 256
References 257

39 The Eocene phosphate deposits of Togo 258
Contents

M. SLANSKY
Name and location 258
Geological setting 258
Geological characteristics 259
Exploitation and resources 261
References 261

40 The igneous phosphate deposits of Matongo-Bandaga, Burundi 262
M. P. KURTAJEK AND B. C. TANDY
Name 262
Location 262
General geology 262
Stratigraphy 262
Structure 262
Phosphate mineralogy and chemistry 264
Age 264
Origin 264
Tectonics 265
Resources 265
References and bibliography 266

41 Phosphate resources in the Palabora Igneous Complex, Transvaal, South Africa 267
D. H. DE JAGER
Name and location 267
General geology 267
Geology of the main body 267
Geological features 267
The Northern Pyroxenite 268
The Southern Pyroxenite 269
The Loole Kop lobe 269
Genesis and emplacement 270
Age 271
Resources 271
Production 271
References 271

42 The aluminous phosphate deposits of Thiès, western Senegal 273
R. FLICOTEAUX AND P. M. HAMEH
Name 273
Geographical distribution 273
Geological setting 273
Stratigraphy 273
Lithostratigraphy 273
Boundary relations 274
Lateral variations 274
Mineralogical and petrographical descriptions 274
Genesis 274
Morphologic and structural control 275
Age 275
Resources 275
The aluminous phosphate ore 275
The calcium phosphate ore 275
References 275

43 The Farim-Saliquinhe Eocene phosphate deposit, Guinea Bissau, West Africa 277
J. P. PRIAN
General geographical and geological setting 277
History of discovery of the deposit 277
Structure and geology of the Farim area 277
Geology and structure of the Farim-Saliquinhe phosphate deposit 279
Limestone at the footwall of the phosphate sequence 279
Calcareous-phosphatic member (FPB) 280
Decarbonatized phosphate member (FPA) 281
Upper dolomitic limestone 281
Phosphate interval (FPO) 281
Sandy-argillaceous overburden 281
Palaeogeographic reconstruction: genesis of FPB and FPA 282
Chemical characteristics of the FPA phosphate: mining parameters for the deposit 282
Ore beneficiation tests 283
Future prospects 283
References 283

44 The Lower Tertiary phosphate deposits of Tunisia 284
K. SVOBODA
Name and location 284
Geology 285
Stratigraphy 285
Gafsa Basin 285
El Kef Basin 285
Eastern basins 285
Mineralogy and chemistry 285
Age 286
Tectonics 286
Sedimentation 286
Resources 286
Production 287
Beneficiation and use 287
By-products 287
References 288

45 The Palaeocene-Eocene phosphate deposits of Djebel Ouk, Algeria 289
S. CHABOU-MOSTEFAI AND R. FLICOTEAUX
Name 289
Geographical distribution 289
Geological setting 289
Stratigraphy of sedimentary calcium phosphates 289
Lithostratigraphic description 289
Age relationships 291
Correlation with the Gafsa-Metsaoui phosphatic series (Tunisia) 292
Palaeogeographic reconstruction 292
Characteristics of the main phosphatic layer 292
Lithostratigraphic description 292
Boundary relations 292
Lateral variations 292
Mineralogy and petrography 293
Resources 293
References 293

46 The Matam phosphate deposits, Senegal 295
M. PASCAL AND M. CHEIKH FAYE
Name 295
Geographical location 295
Geomorphological and general palaeogeographical setting 295
General points and regional geological setting 295
Chronological account 295
Regional geological setting of the mineralisation 296
N’Dierdouri and Ouail Dila phosphate deposits 296
Local lithological setting and host formations 296
Diagenesis and alterations 296
Age of the mineralised formations and their host rock 298
Geometry and extent of the phosphatic formations 298
Contents

47 The phosphate basins of Morocco 301
OFFICE CHÉRIFIEN DES PHOSPHATES, CASABLANCA
Introduction 301
General geology 301
Petrology 301
Ouald Abdou Basin 302
Stratigraphy 302
Petrology 302
Sedimentation 304
Garniour Basin 304
Stratigraphy 304
Maastrichtian 304
Montian 306
Thetian 306
Ypresian 306
Lutetian 306
Sedimentology 306
Meskala Basin 307
Stratigraphy 307
Petrology 308
Palaeogeography 308
Oued Eddahab Basin 308
Stratigraphy 309
Iziz-Iguizi Sectors 309
Labadilla and Imesleguen Sectors 309
Tectonics 310
Resources 310
Production 310
Beneficiation 311
References 311

48 Middle East – introduction 312
Resources 313
Production 314
References 315

49 The Akashat phosphate deposit, Iraq 316
K.S. AL-BASSAM
Name 316
Location 316
General geology 316
Tectonics 316
Stratigraphy 316
Petrology of the phosphate pellets and oolites 320
Palaontology 320
Mineralogy 320
Geochemistry 320
Sedimentation 321
Resources 322
References 322

50 The sedimentary phosphate resources of Iran 323
H. SALEHI
Name and location 323

51 The apatite-magnetite deposit of Esfod, Baq, central Iran 329
H. SALEHI
Name and location 329
General geology 329
Apatite-magnetite deposit 329
Age 330
Origin 330
Resources 330
References 331

52 The phosphorite deposits of the Sirhan–Turaif region, northern Saudi Arabia 332
G.P. RIDDER, M. VAN ECK AND A.M. FARASANI
Introduction 332
Location 332
General geology 332
Stratigraphy 332
Age 335
Petrography and chemistry 335
Sedimentation 336
Tectonics 336
Resources 337
Potential by-products 337
References 337

53 The phosphorites of West Thaniyat, Saudi Arabia 340
J.W. BERGER AND J. JACK
Name 340
Location 340
General geology 340
Stratigraphy 340
Lithostratigraphy 340
Tectonics 342
Sedimentation 342
Resources 343
References 343

54 Upper Cretaceous phosphorites of Jordan 344
I.S. JALLAD, O.S. ABU MURREY AND R.M. SADQAH
Introduction 344
General geology 344
Stratigraphy 344
Mineralogy 345
Petrography 346
Age 346
Resources 346
Physical and chemical properties 347
Production 348
Rare elements 348
References 348

55 The phosphate fields of the Negev (southern Israel) 352
Y. NATHAN AND Y. SHILONI
Name 352
Previous work 352
Contents

Geographical distribution 352
Stratigraphy 352
Age 352
Structure 353
Palaeontology 353
Phosphate petrography 353
Mineralogy and chemistry 354
Environments of deposition 354
Resources and production 355
References 356

56 The phosphorite resources of Syria 357
S. AFYEH
Name and location 357
Geology 358
Khneifsit deposit 358
Eastern (Sawwanah) deposit 359
Wadi Er Rakheime deposit 359
El Habarti-Sirji deposit 359
Ain Layloun deposit 359
Sedimentation 359
Tectonics 360
Age 360
Resources 360
Production 360
Beneficiation 361
Potential by-products 361
References 362

57 Europe – introduction 363
Sedimentary resources 363
Precambrian 363
Palaeozoic 363
Mesozoic 365
Cenozoic 366
Igneous resources 367
Ainö 367
Kodal Dyke 367
Loch Borrallan 367
Cacers 367
Production 367
References 368

58 The Phosphatic Chalk of the Mons Basin, Belgium 370
F. ROBASZYNSKI
Name 370
Location 370
Geology 370
Stratigraphy 370
Lithology 370
Palaeontology 371
Sedimentary structures 372
Petrography 372
Age 373
Sedimentation 373
Tectonics 374
Resources of the Ciply area 374
Thickness and grade 374
Reserves 374
Chemical characteristics 374
Production 374
By-product 374
References and bibliography 375

59 The apatite-magnetite deposits of the Bingöl and Bitlis areas, eastern Turkey 376

60 The Mardin-Mazidagi-Derik phosphate deposits, south-eastern Turkey 380
E. BERKER
Name and location 380
Geology 380
Karababa (Turonian-Senonian) 380
Karabogaz (Maastrichtian) 380
Germay (Kemnay) (Maastrichtian-Palaeocene) 383
Sedimentation 383
Tectonics 383
Age 384
Phosphorite horizons 384
Tagit phosphorite 384
Kasrik phosphorite 384
Akras phosphorite 385
Resources 385
Production 385
Beneficiation 385
References 386

61 Proterozoic-Cambrian phosphate resources in Sweden 387
E. GRIP
Introduction 387
Apatite-iron ores 387
Location 387
Geology of deposits 388
Kuruna 388
Svappavaara 388
South-west of Kuruna 389
Malmberget 389
Grångersberg 389
Resources 390
Production 390
Ainö carbonatite 390
Location 390
Geology 391
Age 392
Resources 392
References 392

62 The Siilinjärvi Carbonatite Complex, eastern Finland 394
K. PUISTIHEINEN AND H. KAUPPINEN
Name and location 394
Geology 394
Igneous structure, including effects of weathering 394
Metamorphic grade 394
Rock chemistry 394
Petrography 395
Phosphate mineralogy 396
Age 396
Igneous cyclicity 396
Tectonics 396
Resources 397
References 397
Contents

63 The phosphate deposits of the Sokli Carbonatite Complex, Finland 398
H. VARTIAINEN
Name and location 398
Regional geology 398
Geology of the carbonatite complex 398
Phosphate deposits 400
Apatite-francolite regolith 400
Apatite-silicate residue 401
Apatite residue on the carbonatite ring dykes 401
Tectonics 402
Resources 402
References 402

64 The Lower Carboniferous phosphate deposits of the Pyrenees and Montagne Noire (southern France) 403
M. SLANSKY
Introduction 403
Geological setting 403
Regional geology 404
Devonian–Devonian (lower Carboniferous) 404
Characteristics of the phosphatic bed 405
Production 405
Resources 405
References 405

65 The Senonian (Cretaceous) phosphatic chalks of the Paris Basin, France 407
C. MONCIARDINI
Geographical and geological setting 407
General geology of the deposits 407
Biofacies and biostratigraphy 408
Petrography 409
Depositional events 409
Palaeoenvironments 409
Tectonics 409
Palaeogeography 410
Ore grade 410
Production 410
Resources 410
References 410

66 Apatite-magnetite mineralisation in the Loch Borralan Igneous Complex, north-west Highlands, Scotland, UK 411
A. J. G. NOTHOLT
Name 411
Location 411
General geology 411
Structure 411
Age 412
Mineralogy 412
Resources 413
Beneficiation 414
Potential by-products 414
References 414

67 The phosphate resources of the Ipiros Province, Ionian Zone, north-western Greece 415
S. E. PAPASTAVROU
Name and location 415
General geology 415
Ionian Zone 415
Stratigraphy 415
Upper Vigla Formation 415
Lower Vigla Formation 418
Pantokrator-Sinai Formation 418

68 Sedimentary facies and stratigraphy of Precambrian–Cambrian phosphorites on the Valdelacasa Anticline, Central Iberian Zone, Spain 422
V. GABALDÓN LOPEZ, J. HERNÁNDEZ URROZ, S. LORENZO ALVAREZ, J. PICART BOIRA, J. SANTAMARÍA CASANOVA AND F. J. SOLÉ PONT
Name and location 422
General geology 422
Domo Extremeño Series 422
Ibor-Navalpino Series 422
Valdelacasa Series 422
Stratigraphy 422
Estomía Sandstones and Pelites 422
Pasa Silstones 423
Azorzo Sandstones 424
Type phosphate prospect 425
Well Laminated Muds 425
Quartz Conglomerate Beds 426
Laminated Sand-Streaked Silts 426
Quartz Phosphatic Conglomerate Beds 426
Clay Chips Conglomerate 426
Phosphatic Sand-Conglomerate Layers 426
Laminated Silt-Streaked Mud 426
Origin 426
Resources 426
References 428

69 Phosphate resources in early Proterozoic supracrustal rocks, Finland, with reference to the Baltic Shield 429
O. AIKAS
Introduction 429
Phosphorites in metamorphic supracrustal rocks of Finland 429
General geology 429
Uraniferous phosphorites 429
Nuottijärvi 430
Temo 431
Lampinsaari 431
Mustamaa 431
Other occurrences 431
Non-uraniferous phosphorites 431
Iron-formation 431
Leptites 431
Slates and black shales 431
Quartzites 432
Phosphorites in supracrustal rocks of Sweden 432
Phosphorites in supracrustal rocks of the USSR 433
Age and phosphogenic episodes 433
Phosphate resources 434
Exploration potential 434
Summary 434
References 435

70 Asia – introduction 437
Sedimentary resources 437
Precambrian 437

Palaeontology 418
Phosphate mineralogy 418
Age 418
Sedimentation 418
Tectonics 418
Resources 418
Production 421
References 421
Contents

Palaeozoic 438
Tertiary 439
Igneous resources 440
Production 441
References 441

71 The Mussoorie Phosphate Basin, India 443
R. SHANKER
Name 445
Location 443
Regional geological and tectonic setting 443
Palaeontology and age 443
Phosphate petrography and chemistry 445
Sedimentation 446
Phosphate mineralisation and resources 447
Production 447
References 447

72 Cambrian phosphorite deposits of the Hazara Division, North West Frontier Province, Pakistan 449
M.T. HASAN
Name 449
Location 449
General geology 449
Structure 449
Phosphate deposits 451
Kakul-Mirpur 451
Lagarban and Kalu-de-Bandi 451
Dolola 451
Sirbun Hill 451
Mineralogy 451
Age 452
Resources 453
Production 454
References 454

73 Phosphate (apatite) resources in the Loi Shilman Carbonatite, Khyber Agency, North West Frontier Province, Pakistan 455
M.T. HASAN AND ASRARULLAH
Name 455
General geology 455
Petrography 455
Tectonics 456
Age 456
Resources 456
References 457

74 The phosphate resources of the Eppawala Carbonatite Complex, northern Sri Lanka 458
D.E. DE S. JAYAWARDENA
Name and location 458
General geology 458
Phosphate deposits 458
Structure 459
Age 459
Resources 459
References 460

75 Proterozoic phosphorites around Udaipur, Rajasthan, India 461
R. CHOUDHURI
Name 461
Location 461
General geology 461
Tectonics 461

76 Phosphate deposits of the Jhabua District, Madhya Pradesh, India 467
Introduction 467
General geology 468
Stratigraphy 469
Age 470
Sedimentation 471
Tectonics 471
Resources 471
Production 472
References 472

77 Phosphate resources in the Bijawar Group of central India 473
A. PANT, R.H. KHAN AND A. SONAKIA
Introduction 473
General geology 473
Stratigraphy 473
Hirapur Basin 473
Lalitpur Basin 473
Phosphate 474
Hirapur Basin 475
Lalitpur Basin 475
Sedimentation 476
Resources 477
Hirapur Basin 477
Production 477
Lalitpur Basin 477
References 477

78 USSR and Mongolian People's Republic – introduction 478
Resources 478
Sedimentary resources 478
Proterozoic-Palaeozoic 478
Mesozoic and Tertiary 480
Igneous resources 480
Production 480
References 481

79 The Khubusugul phosphorite deposit, Mongolian People's Republic 482
A.V. ILYIN, L. OCHIR AND G.I. RATNIKOVA
Name and location 482
General geology 482
Petrography and mineralogy 483
Sedimentation 483
Tectonics 483
Age 484
Resources 484
References 484

80 Apatite deposits in the Khibiny and Kvodor alkaline igneous complexes, Kola Peninsula, North-Western USSR 485
A.V. ILYIN
Name and location 485
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology 485</td>
<td></td>
</tr>
<tr>
<td>Khbiny 485</td>
<td></td>
</tr>
<tr>
<td>Kovdor 486</td>
<td></td>
</tr>
<tr>
<td>Apatite deposits 486</td>
<td></td>
</tr>
<tr>
<td>Khbiny 486</td>
<td></td>
</tr>
<tr>
<td>South-western ore field 486</td>
<td></td>
</tr>
<tr>
<td>South-eastern ore field 488</td>
<td></td>
</tr>
<tr>
<td>North-western ore field 488</td>
<td></td>
</tr>
<tr>
<td>Petrography 488</td>
<td></td>
</tr>
<tr>
<td>Khbiny 488</td>
<td></td>
</tr>
<tr>
<td>Kovdor 490</td>
<td></td>
</tr>
<tr>
<td>Structure 490</td>
<td></td>
</tr>
<tr>
<td>Age 490</td>
<td></td>
</tr>
<tr>
<td>Origin 491</td>
<td></td>
</tr>
<tr>
<td>Resources 491</td>
<td></td>
</tr>
<tr>
<td>Production 491</td>
<td></td>
</tr>
<tr>
<td>References 492</td>
<td></td>
</tr>
</tbody>
</table>

81 The Ordovician Baltic phosphorite basin, USSR 494

N.A. Krasilnikova and A.V. Ilyin

Location 494

General geology 494

Structure 494

Phosphate deposits 494

Maardu 495

Kangisepp 495

Sedimentation 495

Age 496

Resources 496

Production 496

References 496

82 The Lower Cambrian Karatau Phosphorite Basin, Kazakhstan, USSR 497

A.V. Ilyin, N.A. Krasilnikova and M.P. Kazakova

Name and location 497

General geology 497

Phosphate deposits 498

Chulaktau 498

Akasy 499

Kokdzhon 499

Dzhahanat 499

Koksu 499

Petrography 500

Structure 500

Sedimentation 500

Age 501

Resources 501

Production 501

References 502

83 Permian phosphorites of the Ural Mountains, USSR 503

A.V. Ilyin

Location 503

General geology 503

Phosphate deposits 504

Seleuk 504

Abdullahino 504

Sedimentation 504

Structure 506

Resources 506

References 506

84 The Kisil Kum phosphorite deposits, Middle Asia, USSR 507

A.V. Ilyin and V.S. Boiko

Introduction 507

Stratigraphy 507

Petrography and chemistry 508

Sedimentation 508

Resources 509

References 509

85 Igneous Proterozoic-Cambrian phosphate resources in eastern Siberia, USSR 510

A.V. Ilyin and N.A. Krasilnikova

Name and location 510

Geology 510

Seligdar 510

Oshurkov 510

Apatite mineralisation 510

Structure 511

Age 512

Origin 512

Resources 512

References 512

86 Late Precambrian–Early Cambrian phosphorite province of South Siberia, USSR 514

A.V. Ilyin and N.A. Krasilnikova

Location 514

Geology 514

Phosphate deposits 514

Ukghol 514

Belka 515

Petrography 515

Telek 516

Structure 516

Sedimentation 516

Age 516

Resources 516

References 516

87 Late Mesozoic phosphorite basins, USSR 518

A.V. Ilyin and N.A. Krasilnikova

Name and location 518

Geology 519

Volga basin 519

Vyatka-Kama basin 520

Aktyubinsk basin 521

Sedimentation 522

Age 523

Resources 523

Production 523

References 524

88 Australia, New Zealand and Oceania – introduction 525

Precambrian 526

Palaeozoic 526

Mesozoic 526

Cenozoic 526

Igneous resources 527

Production 527

References 527

89 The Chatham Rise phosphorites of New Zealand 528

D.J. Cullen

Name 528

Location 528

General geology 528

Stratigraphy and age 529

Sedimentary associations 529
Contents

Mineralogy and geochemistry 529
Phosphogenesis 529
Resources 530
Mining technology 531
Agronomic suitability 531
By-products 532
References 532

90 Phosphate deposits of the Georgina Basin, northern Australia 533
P. J. C. Cook
Introduction 533
Regional geology 533
History of phosphate exploration 536
Phosphate deposits 536
Duchess 537
Ardmore 537
Quita Creek 538
Lily Creek 538
Sherrin Creek 538
Engine Creek 538
D Tree 539
Lady Annie 539
Lady Jane 539
Wonarah 540
Alexandria 540
Atley 540
Riversleigh 540
Phantom Hills 540
Mount Jennifer 540
Babbling Brooke Hill 541
Mount O'Connor 541
Highland Plain 541
Economic outlook for the Georgina deposits 541
References 543

91 The Wonarah phosphate deposit, Georgina Basin, Australia 545
P. F. Howard
Introduction 545

General geology 545
Stratigraphy 545
The phosphorites 547
Age 547
Tectonics 547
Sedimentation 548
Resources 549
References 550

92 The D Tree phosphate deposit, Georgina Basin, Australia 551
P. F. Howard
Introduction 551
General geology 551
Stratigraphy 551
The phosphorites 554
Age 556
Tectonics 556
Sedimentation 556
Resources 556
References 557

93 Christmas Island (Indian Ocean) phosphate deposits 558
P. J. Barrett
Name and location 558
General geology 558
Stratigraphy 558
Age 559
Formation and distribution of phosphate deposits 560
Apatite ores 561
Crandallite/millosite ores 561
Phosphatised volcanic ores 561
Tectonics 562
Resources 562
Distribution 562
Reserves 562
Chemical characteristics 562
Production 563
References 563
Phosphate deposits/areas index 565
Contributors

O. Äikäs
Geological Survey of Finland, PO Box 237, SF 70101, Kuopio 10, Finland

K.S. Al-Bassam
Directorate General of Geological Survey and Mineral Investigation, PO Box 986, Alwiya, Baghdad, Iraq

O.S. Abu Murrey
Jordan Phosphate Mines Company, PO Box 30, Amman, Jordan

Gildo de A. Sa C. de Albuquerque
NORFERTIL SA, Rua Senador Dantas, 14–9 Andar, Rio de Janeiro, RJ, CEP 20031, Brazil

S. Lorenzo Alvarez
Minas de Almaden y Arrayanes, SA, Paseo de la Castellana 18, 28001 Madrid, Spain

I.S. Andersen
Department of Geology, The University of Zambia, PO Box 32379, Lusaka, Zambia

Asrarullah
Geological Survey of Pakistan, PO Box 15, Quetta, Pakistan

S. Atfeh
c/o Geoserv, PO Box 3776, Damascus, Syria

P.J. Barrett
Phosphate Mining Company of Christmas Island Ltd., 8th Floor, 440 Collins Street, Melbourne 3000, Australia

J.W. Berge
Bolden Contech, Box 45118, S-104/30 Stockholm, Sweden

E. Berker
Maden Tetkik ve Ara Amma Enstitüsü, Posta Kutusu 116, Ankara, Turkey

V.S. Boiko
Institute of the Lithosphere, Academy of Sciences, Staromonetny per. 22, Moscow 109180, USSR

J. Picart Boira
Minas de Almaden y Arrayanes, S.A., Paseo de la Castellana 18, 28001 Madrid, Spain
Contributors

H. Born
Universidade de São Paulo, Escola Politecnica,
Departamento de Engenharia de Minas, CP 8174, 05508 São Paulo, Brazil

A. Boujo
Bureau de Recherches Géologiques et Minières, BP 6009,
45060 Orléans Cedex 2, France

S.R. Bressan
Metais de Goiás S.A., Rua 68, No. 727 – Centro, Goiana,
Goiás, Brazil

W. Teixeira de Carvalho
Metais de Goiás S.A., Rua 68, No. 727 – Centro, Goiana,
Goiás, Brazil

J. Santamaria Casanova
Minas de Almadén y Arrayanes, S.A., Paseo de la Castellana
18, 28001 Madrid, Spain

J.B. Cathcart
US Geological Survey, Branch of Energy Minerals, Box
25046, Mail Stop 912, Denver Federal Center, Denver,
Colorado 80225, USA

S. Chabou-Mostefai
Université d’Aix-Marseille, Faculté des Sciences et
Techniques de Saint-Jérôme, 13397 Marseille Cedex 13, France

M. Cheikh Faye
Bureau de Recherches Géologiques et Minières, Mines and
Geology Branch, Dakar, Senegal

R. Choudhuri
Rajasthan State Mines and Minerals Ltd, 133 Saheli Marg,
Udaipur 313001, Rajasthan, India

R.L. Christie
Geological Survey of Canada, Institute of Sedimentology &
Petroleum Geology, 3303–33rd Street NW, Calgary, Alberta
T2L 2A7, Canada

P.J. Cook
Division of Continental Geology, Bureau of Mineral
Resources, Geology and Geophysics, PO Box 378, Canberra
ACT 2011, Australia

D.J. Cullen
New Zealand Oceanographic Institute, DSIR, PO Box
12–346, Wellington North, New Zealand

E.H. Dahlberg
University of Minnesota, 2842 University Avenue, St. Paul,
Minnesota 5514–1057, USA

E.C. Damasceno
Escola Politecica da Universidade de São Paulo,
Departamento de Engenharia de Minas, CP 8174, 05508 São Paulo, São Paulo, Brazil

R.L. Detterman
US Geological Survey, Branch of Alaska Geology, 345
Middlefield Road, Menlo Park, California 94025, USA

R.V. Dingle
Department of Geology, University of Cape Town,
Rondebosch 7700, South Africa

M. van Eck
Riofisnex Geological Mission, PO Box 3880, Jiddah, Saudi Arabia

G. Erdos
5421 Easley Road, Golden, Colorado 80403, USA

A.M. Farasani
Deputy Ministry of Mineral Resources, Jiddah, Saudi Arabia

T.R.C. Fernandes
Institute of Mining Research, University of Zimbabwe, PO
Box MP 167, Mount Pleasant, Harare, Zimbabwe

R. Flitotiaux
Laboratoire de Géologie dynamique, Faculté des Sciences et
Techniques de Saint-Jérôme, Université de Droit, 13397
Marseille Cedex 13, France

D.B. Ghosh
Geological Survey of India, Uttar Pradesh Geological,
Northern Region, B-112 Nirala Nagar, Lucknow, Uttar Pradesh, India

J.F. Giannini
NORFERTIL SA, Rua Senador Dantas, 16–9 Andar, Rio de
Janeiro, RJ, CEP 20031, Brazil

D. Giot
Bureau de Recherches Géologiques et Minières, BP 6009,
45060 Orleans Cedex 2, France

E. Grip
Gideon Hydén Väg 11, 141 45 Huddinge, Sweden

L.T. Grose
Colorado School of Mines,
Department of Geological Engineering, Golden, Colorado
80401, USA

R.C. Gutschick
Department of Earth Sciences, University of Notre Dame,
Notre Dame, Indiana 46556–1020, USA

M. Talib Hasan
Geological Survey of Pakistan, C-20, Block VI, P.E.C.H.
Society, Karachi, Pakistan

P.M. Hameh
Compagnie Sénégalaise de Phosphates de Taiba, PO Box
1713, Dakar, Senegal

Q.B. Hendey
Department of Cenozoic Palaeontology, South African
Museum, PO Box 61, Cape Town 8000, South Africa

P.F. Howard
School of Earth Sciences, Macquarie University, North
Ryde, New South Wales 2113, Australia

C.A. Hugo
Servicio Minero Nacional, Av. Santa Fe 1548–4 Piso, 1060
Buenos Aires, Argentina
Contributors

A.V. Ilyin
Institute of the Lithosphere, Academy of Sciences,
Staromonetny per. 22, Moscow 109180, USSR

B. Issawi
The Egyptian Geological Survey and Mining Authority, 3
Salah Salem Street, Abbassia PO, Cairo, Egypt

J. Jack
Boliden Comtech, Box 45118, S-104/30 Stockholm, Sweden

D.H. de Jager
Phosphate Development Corporation Ltd., PO Box 1,
Phalaborwa 1390, Northern Trasvaal, South Africa

I.S. Jallad
Jordan Phosphate Mines Co., PO Box 30, Amman, Jordan

D.E. de S. Jayawardena
Geological Survey Department, Colombo 2, Sri Lanka

H.O. Jiddou
Société Nationale Industrielle et Minière, Nouakchott,
Mauritania

F.A. Kabagambe-Kallisa
Department of Geological Survey and Mines, PO Box 9,
Entebbe, Uganda

H. Kauppinen
Kemira Oy, 78100 Siilinjärvi, Finland

M.P. Kazakova
Institute of Chemical Raw Materials, Lyubertsy, Oktyabrskiy
prospect 259, Moscow, USSR

H.H. Khan
Geological Survey of India, Uttar Pradesh Circle, Northern
Region, B-112 Nirala Nagar, Lucknow, Uttar Pradesh, India

C. Knudsen
Geological Survey of Greenland, Øster Voldgade 10, DK
1350 Copenhagen K, Denmark

N.A. Krasilnikova
Institute of Chemical Raw Materials, Lyubertsy, Oktyabrskiy
prospect 259, Moscow, USSR

M.P. Kurtanjek
The British Sulphur Corporation Ltd., Parnell House, 25
Wilton Road, London SW1V 1NH, England

H.A. Leanza
Servicio Minero Nacional, Av. Santa Fe 1548–4 Piso, 1060
Buenos Aires, Argentina

V. Gabaldón López
Instituto Geológico y Minero de España, Rios Rosas 23,
Madrid 3, Spain

G.H. McClellan
Fertilizer Technology Division, International Fertilizer
Development Center (IFDC), PO Box 2040, Muscle Shoals,
Alabama 35660, USA

O.O. Mastandrea
Servicio Minero Nacional, Av. Santa Fe 1548–4 Piso, 1060
Buenos Aires, Argentina

G. Maurin
Bureau de Recherches Géologiques et Minières, BP 6009,
45060 Orléans-Cedex 2, France

C. Monciardini
Bureau de Recherches Géologiques et Minières, BP 6009,
45060 Orleans Cedex 2, France

C. Muñoz Cabezon
Juan Hurtado de Mendoza 14, Madrid 16, Spain

Y. Nathan
Ministry of Energy, Geological Survey of Israel, 30 Malchei
Yisrael Street, 95 501 Jerusalem, Israel

A.J.G. Notholt
12 Thornhill Road, Ickenham, Uxbridge UB10 8SF, England

C.J. Oblitas
Servicio Minero Nacional, Av. Santa Fe 1548–4 Piso, 1060
Buenos Aires, Argentina

L. Ochir
Institute of Geology, Academy of Sciences, Ulan Bator,
Mongolian People’s Republic

S.E. Papastavrou
Institute of Geology and Mineral Exploration, Messogthon
Street 57, Athens 115 27, Greece

P. Potapoff
Camchib Resources Inc., Suite 705, 65 Queen Street West,
Toronto, Canada M5H 2MS

A. Pant
Geological Survey of India, Rajasthan Circle 1, 0/87, Meera
Marg, Jaipur 302006, Rajasthan, India

M. Pascal
Bureau de Recherches Géologiques et Minières, BP 6009,
45060 Orleans Cedex 2, France

F.J. Solé Pont
Minas de Almaden y Arrayanes, SA, Paseo de la Castellana
18, 28001 Madrid, Spain

J.-P. Priant
Bureau de Recherches Géologiques et Minières, BP 6009,
45060 Orleans Cedex 2, France

S.N. Punukollu
Zambia Industrial and Mining Corporation, PO Box 30090,
Lusaka, Zambia

K. Puustinen
Geological Survey of Finland, Kivimiehentie 1, 02150 Espoo
15, Finland

G.I. Ratnikova
Institute of the Geology of Foreign Countries, Moscow, USSR

G.P. Riddler
RioFindex Geological Mission, PO Box 3880, Jiddah, Saudi
Arabia

S.R. Riggs
Department of Geology, East Carolina University, PO Box
2751, Greenville, North Carolina 27834, USA
Contributors

F. Robaszynski
Faculté Polytechnique de Mons, Département de Géologie,
Rue de Haudain, 700 Mons, Belgium

A.E. Roberts
US Geological Survey, Mail Stop 26, 345 Middlefield Road,
Menlo Park, California 94025, USA

S.E. Rodríguez
Servicio Geológico, Ministerio de Energía y Minas, Piso 4,
Torre Oeste, P.C., Caracas 1010, Venezuela

R.M. Sadaqah
Jordan Phosphate Mines Company, PO Box 30, Amman,
Jordan

H.S. Salehi
Geological Survey of Iran, PO Box 1964, Tehran, Iran

C.A. Sandberg
US Geological Survey, Box 25046, Federal Center, Denver,
Colorado 80225, USA

T. Schröter
Freie Universität Berlin, Institut für Angewandte Geologie,
Wichernstr. 16, D-1000 Berlin 33, Federal Republic of
Germany

K. Secher
Geological Survey of Greenland, Øster Voldgade 10, DK
1350 Copenhagen, Denmark

I. Seyhan
Maden Telik ve Arama Enstitüsü (MTA), Posta Kutusu
116, Ankara, Turkey

R. Shanker
Director (Geology), Geological Survey of India (Central
Region), New Secretariat Building, Nagpur 440 001, India

R.P. Sheldon
3816 T Street NW, Washington, DC20007, USA

Y. Shiioni
Ministry of Energy, Geological Survey of Israel, 30 Malchei
Yisraël Street, 95 501 Jerusalem, Israel

M. Slansky
815 rue de Verdun, 45580 St. Hilaire-St. Mesmin, Orléans,
France

A. Sliwa
Zambia Industrial and Mining Corporation, PO Box 30090,
Lusaka, Zambia

A. Sonakia
Geological Survey of India, 52 Narmada Road, Jabalpur,
Madhya Pradesh, India

M.K. Soni
Geological Survey of India, Uttar Pradesh Circle, Northern
Region, B-112 Nirala Nagar, Lucknow, Uttar Pradesh, India

A.T. Spiegelman
Servicio Minero Nacional, Av. Santa Fe 1548-4 Piso, 1060
Buenos Aires, Argentina

G. Sustrac
Direction Scientifique, Bureau de Recherches Géologiques et
Minières, BP 6009, 45060 Orléans Cedex 2, France

K. Svoboda
1600 00 Prague 6, K Mateji 17, Czechoslovakia

B.C. Tandy
The British Sulphur Corporation Ltd., Parnell House, 25
Wilton Road, London SW1V 1NH, England

B. Traore
Direction de la Géologie et des Mines, BP 223, Bamako,
Mali

F. Tembo
Department of Geology, The University of Zambia, PO Box
32379, Lusaka, Zambia

R. Trompette
Laboratoire Géologie, Université Aix-Marseille III, Centre de
St. Jérôme, 13.397 Marseille Cedex 13, France

D.C. Turner
Department of Geology, The University of Zambia, PO Box
32379, Lusaka, Zambia

J. Hernández Uroz
Minas de Almadén y Arrayanes, SA, Paseo de la Castellana
18, 28001 Madrid, Spain

E. Valdebenito Macho
Av. Argentina 33, Torre E. Perez Zujovic, Depto. 36,
Antofagasta, Chile

H. Vartiainen
Kemira Oy, Lainaankatu 8, 96200 Ravaniami, Finland

M. Zafar
Geological Survey of India, Uttar Pradesh Circle, Northern
Region, B-112 Nirala Nagar, Lucknow, Uttar Pradesh, India

E. Zoungrama
Direction de la Géologie et des Mines, BP 601,
Ouagadougou, Burkina Faso
Preface

Project 156, Phosphorites, was established in 1977 as a research programme on Proterozoic–Cambrian Phosphorites of Asia and Australia, sponsored and led by Peter J. Cook and John H. Shergold of the Bureau of Mineral Resources, Geology and Geophysics, Canberra. As such, it is one of a number of long-term, interdisciplinary geological research projects being supported by the International Geological Correlation Programme (IGCP) under the aegis of the International Union of Geological Sciences and UNESCO.

However, such has been the interest shown in Project 156 that it has of necessity been extended to cover a much wider range of topics. There are now four Working Groups within Project 156, the work of each of these being co-ordinated by two Chairmen: Working Group 1 – Proterozoic-Cambrian Phosphorites (Co-Chairmen: P.J. Cook and J.H. Shergold); Working Group 2 – International Phosphate Resource Data Base (Co-Chairmen: R.P. Sheldon and A.J.G. Notholt); Working Group 3 – Young Phosphogenic Systems (Co-Chairmen: W.C. Burnett and S.R. Riggs); and Working Group 4 – Cretaceous-Eocene Phosphorites (Co-Chairmen: K. Al-Bassam, S. Sassi, and J. Lucas). In addition, other groups have been formed as Project 156 progressed. The Committee on Rock Phosphate Standards was convened by Z.S. Altschuler, L. Prévôt and Y. Zanin, and also one on igneous Phosphates by A.J.G. Notholt and S.M. Punukollu. National working groups also formed to promote interchange between phosphate geologists in various countries and, where appropriate, to arrange international meetings. Contacts with national working groups have been made formally through National Representatives nominated by National IGCP Committees, or informally through National Correspondents. Links with all these Working Groups and, notably, with the more than 700 scientists participating in Project 156 have been maintained primarily through the publication, bi-annually, of the Project Newsletter.

One of the aims of Project 156 has been that the results of each of the four Working Groups, as well as the wealth of data accumulated during its existence, should be made available through publication. With this objective in mind, a series of multi-author volumes was planned under the general title Phosphate Deposits of the World to be published by the Cambridge
Preface

University Press in its Earth Science Series. The first in the series, devoted to Proterozoic and Cambrian Phosphates and edited by P.J. Cook and J.H. Shergold, was published in 1986. The present volume on World Phosphate Rock Resources is thus the second in the series and reflects the systematic and comprehensive efforts of Working Group 2 to organise geological data on all major world deposits and phosphate fields.

Phosphorus is an element widely distributed in nature and occurs, together with nitrogen and potassium, as primary constituents of plant and animal life. It is also a mineral-forming element in a large variety of crustal rocks. As a commercial source of phosphorus, phosphate rock is an essential raw material in the manufacture of fertilisers and certain industrial chemicals: there is little opportunity for substitution or recycling, unlike other vital mineral commodities such as iron ore, copper and sulphur. Phosphate rock for direct application to the soil has been invaluable for many years for use on predominantly acid soils which are usually markedly deficient in phosphorus.

However, phosphate rock itself is an imprecise term for a wide variety of rocks of diverse origin, character, and mode of occurrence, the chemical and physical characteristics of which may render them acceptable for use in the minerals industry. Most of the world’s marketable production of around 134 million tonnes per annum is derived from deposits of sedimentary marine origin (phosphorites), notably those of Miocene–Pliocene, Upper Cretaceous–Eocene, and Permian age in the USA and of Cambrian age in the USSR and China, but a significant quantity, representing about 18% of the total output, is derived from igneous rocks and their weathering derivatives. The USSR is by far the most important producer of phosphate rock. The remainder is obtained largely from residual sedimentary deposits developed from weakly phosphatic Ordovician limestones in Tennessee, USA, and from the supposedly guano-derived deposits worked in the western Pacific on Nauru and on Christmas Island in the Indian Ocean. In spite of the very wide variety of phosphate rock types, the phosphate mineral in sedimentary deposits is invariably carbonateapatite or francolite. Fluorapatite predominates in crustal rocks and represents the principal phosphate mineral in deposits of igneous origin. In igneous deposits, francolite occurs only as a secondary mineral, being important in the supergene phases and residual enrichments. Thus, of the several species or varieties of the apatite group, only two are of commercial importance at present, although calcium-aluminium phosphate minerals predominate in residual (lateritic) deposits.

The phosphate content or grade of phosphate rock, as mined, is commonly reported as phosphorus pentoxide (P_2O_5), and in commercial deposits this may average as little as 3.8%. The phosphate content may also be expressed as tricalcium phosphate ($Ca_3(PO_4)_2$) traditionally referred to as bone phosphate of lime (BPL), reminiscent of the time when bones represented the principal source of phosphate in fertiliser manufacture ($P_2O_5 \times 2.1853 = \text{BPL}$). A minimum of around 28% P_2O_5 is normally stipulated by manufacturers of phosphoric acid and phosphatic fertilisers, the principal end-uses; most marketed grades of phosphate rock contain more than 30% P_2O_5 (65% BPL). To meet this requirement most phosphate ores undergo beneficiation; many techniques are available, including washing and screening, de-sludging, magnetic separation, flotation and calcination.

As is evident from the present volume, World Phosphate Rock Resources, phosphate rock is widely distributed throughout the world, both geographically and geologically, and there are very large resources capable of meeting anticipated demand for many years. Estimates of world resources vary considerably, but on the basis of the information collated in this volume we estimate that total world resources are of the order of at least 163,000 million tonnes of all grades and types of phosphate rock: Africa contains about 41% (mostly in the Tethyan phosphogenic province), the USA 21%; the USSR 13%; the Middle East 10%; Asia 8%; South America 3%; and Australia, New Zealand and Oceania have 2%. Resources in Europe account for less than 1% of total known resources. World igneous phosphate rock resources total about 5500 million tonnes, equivalent to roughly 4% of the world total. It must be stressed, however, that much of the total world resources includes deposits whose commercial exploitation depends on either greatly improved or new technology or more favourable economic circumstances. For example, perhaps as much as two-thirds of the known resources are composed of carbonate-rich phosphate rock for which satisfactory beneficiation technology has yet to be developed on a commercial scale. In addition, resource estimates for many countries and deposits often ignore the essential technical distinction between reserves and resources and offer insufficient data about the technical and economic feasibility of producing marketable grades of phosphate rock.

Throughout the life of Project 156, the scientific aim of all participants has been to develop a better understanding of the distribution, nature and origin of phosphate deposits. With that objective in mind, we judge that this volume will be of interest to both the specialist and general reader alike and, in this context, will prove to be a valuable source of reference on the subject. We hope that World Phosphate Rock Resources will make an important contribution not only to basic scientific knowledge but also in the search for phosphate deposits in many parts of the world and, ultimately, to the successful development of the world’s resources of this vital raw material.

Arthur J.G. Notholt Richard P. Sheldon
David F. Davidson

Working Group 2, IGCP Project 156

Recommended sources of information

Acknowledgements

Many organisations and individuals have kindly provided assistance in the preparation of this volume, *World Phosphate Rock Resources*, and their help, whether financial, logistical, organisational or in respect of publication of the volume, is hereby gratefully acknowledged.

Organisations which have supported this venture, both directly and indirectly, include the following:

- Albright & Wilson Limited, London
- Boliden Conteck, Stockholm
- British Geological Survey, Keyworth
- British Sulphur Corporation Limited, London
- Bureau de Recherches Géologiques et Minières, Orléans
- Bureau of Mineral Resources, Geology and Geophysics, Canberra
- Camchib Resources Incorporated, Toronto
- Centre national de la Recherche scientifique, Paris
- Colorado School of Mines, Golden
- Commonwealth Science Council, London
- Compagnie Sénégalaise des Phosphates de Taiba, Dakar
- Companhia de Pequisa de Recursos Minerais, Brasilia
- Corporacion de Fomento de la Produccion, Santiago
- Deputy Ministry of Mineral Resources, Jiddah
- Direction de la Géologie et des Mines, Bamako
- Directorate General of Geological Survey and Mineral Investigation, Baghdad
- East Carolina University, Greenville
- Empresa Nacional Adaro de Investigaciones Mineras, Madrid
- Faculté Polytechnique de Mons, Mons
- Freie Universität Berlin, Berlin
- General Petroleum and Mineral Organisation, Jiddah
- Geological Survey Department, Colombo
- Geological Survey of Finland
- Geological Survey of Greenland
- Geological Survey of India
- Geological Survey of Iran
- Geological Survey of Israel
- Geological Survey of Pakistan
- Geological Survey and Mines Department, Entebbe
- Geological Survey and Mining Authority, Cairo
Acknowledgements

Granges International Mining, Stockholm
Institut de Geologie, Université Louis Pasteur, Strasbourg
Institute of Geology and Mineral Exploration, Athens
Institute of the Lithosphere, USSR Academy of Sciences, Moscow
Institute of Mining Research, Harare
Instituto Geológico y Minero de España, Madrid
International Fertilizer Industry Association Ltd, Paris
International Fertilizer Development Center, Muscle Shoals
International Geological Correlation Programme, Paris
Jordan Phosphate Mines Company, Amman
Kemira Oy, Helsinki
Macquarie University, North Ryde
Maden Teknik ve Arama Enstitüsü, Ankara
Minas de Almaden y Arrayanes, SA, Madrid
Ministère de l’Énergie et des Mines, Casablanca
Ministry of Petroleum and Mineral Resources, Damascus
Minneapolis Geological Survey, St. Paul
Mongolian Academy of Sciences, Ulan Bator
New Zealand Oceanographic Institute, Wellington
Office Chérifien des Phosphates, Casablanca
Petrobras Fertilizantes SA, Rio de Janeiro
Phosphate Development Corporation Limited, Phalaborwa
Phosphate Mining Company of Christmas Island Limited, Melbourne
Rajasthan State Mines & Minerals Ltd, Udaipur
Rajasthan State Directorate of Mines & Geology, Udaipur
Rautaruukki Oy, Rovaniemi
Scientific Research Institute for Chemical Raw Materials, Moscow
Servicio Minero Nacional, Buenos Aires
Société Nationale Industrielle et Minière, Nouakchott
South Africa Museum, Cape Town
The Royal Society
Universidad de Antofagasta, Antofagasta
Universidade de São Paulo, São Paulo
Université d’Aix Marseille III, Marseille
Université de Droit, Marseilles
University of Cape Town, Rondebosch
University of Notre Dame, Notre Dame
University of Zambia, Lusaka
University of Zimbabwe, Harare
US Geological Survey
USSR Academy of Sciences, Moscow
Zambia Industrial and Mining Corporation, Lusaka

In addition to the general acknowledgements made above, authors of some chapters wish to acknowledge the assistance and constructive criticism from a number of other individuals and/or organisations:

G.A.S.C. de Alburquerque and J.F. Giannerini acknowledge the kind co-operation of F. Mouayr de Vasconcellos, formerly of Fosforita Olinda, SA.
J.W. Berge and J. Jack acknowledge the support of the General Petroleum and Mineral Organisation, Jiddah, and Granges International Mining.
H. Born is grateful to Serrana S.A. de Mineração for permission to use unpublished company data.
W.C. Carvalho and S.R. Bressan are grateful to Metais de Goiás SA for permission to publish, and also acknowledge the services provided by J.C.A. Costa, A.D. Araujo, and G.M.W. Medeiros.
J.B. Cathcart publishes with the permission of the Director, US Geological Survey.
R.L. Christie publishes with the permission of the Director, Geological Survey of Canada.
P.J. Cook publishes with the approval of Director, Bureau of Mineral Resources, Geology and Geophysics, Canberra, and also acknowledges the assistance of D. Jones, and M. Moffat and staff of the BMR drawing office.
E.H. Dahlgberg acknowledges the award of a Fellowship under the Hubert H. Humphrey North-South Program, and is grateful to D. Southwick and F.J. Sawkins, University of Minnesota, and to R.P. Sheldon, formerly of the US Geological Survey, for their critical reading of the manuscript. The hospitality of the Director and staff of the Minnesota Geological Survey is also gratefully acknowledged.
E.C. Damasceno thanks Fosfertil SA for permission to publish.
E. Grip wishes to thank P. Forsell, LKAB Prospecting Co., and P. Aronsson, Swedish Steel Co., and also F. Back, for their assistance.
Q.B. Hendey and R.V. Dingle are grateful to J.M. Bremner and J. Rogers for their critical reading of the manuscript, and to the South Africa Museum, the South African Council for Scientific and Industrial Research, and the University of Cape Town, for their financial support. Access to the Varswater Quarry and logistical support was kindly provided by Chemfos Limited and their parent company SAMANCOR, Johannesburg.
P.F. Howard gratefully acknowledges the assistance of P.J. Cook and J.H. Shergold, Bureau of Mineral Resources, Geology and Geophysics, Canberra.
D.H. de Jager thanks the management of the Phosphate Development Corporation Limited for permission to publish.
I.S. Jailall, O.S. Abu Murrey and R.M. Saduqah acknowledge the assistance of their colleagues of Jordan Phosphate Mines Company, and also thank Drs Abed and Nikbel of Jordan University, Amman.
H.H. Khan is grateful to the Director General, Geological Survey of India, for permission to publish, and acknowledges the assistance of S. Narain and S. Husain, also of the Geological Survey of India.
C. Knudsen publishes with the permission of the Director, Geological Survey of Greenland, and thanks Kryōlitiselskabet Øresund A/S for allowing access to company drill cores.
V. Gabaldón López, J. Hernández Urroz, S. Lorenzo Alvarez, J. Picart Boira, J. Santamaría Casanovas, and F.J. Solé Pont would like to thank R. Arteaga Rodriguez, Director of Mineral Resources, Instituto Geológico y Minero, Madrid, and J.M. Oliveros Rives, General Director, Minas de Almadén y Arrayanes, SA, Madrid, for permission to publish, as well as other colleagues for the services kindly provided.
A.J.G. Notholt is grateful to D.E. Highley, British Geological Survey, for his critical reading of the manuscript.
A. Pant, H.H. Khan and A. Sonakia gratefully acknowledge...
Acknowledgements

the encouragement and assistance of colleagues in the Geological Survey of India, in particular and Director General, D.P. Dhoundial, Senior Deputy Director General, and C. Tripathi, Deputy Director General, Geological Survey of India, Northern Region.

M. Pascal and M. Cheikh Faye publish with the permission of Moussa Dieng, Director of the Mines and Geology Branch, Senegal.

M. Pascal and B. Traore are grateful to the Mali Government and in particular to S. Djallo for his permission to publish.

M. Pascal and G. Sustrac acknowledge with thanks the collaboration of F. Barthelemey, M. Dieng, B. Faye, C. Faye, S. Kande, and M. Seck.

G.P. Riddler, M. van Eck, and A.M. Farasani publish with the permission of H.E. Ghazi Sultan, Deputy Minister of Mineral Resources, Jeddah.

C.A. Sandberg and R.C. Gutschick publish with the permission of the Director, US Geological Survey.

K. Secher publishes with the permission of the Director, Geological Survey of Greenland.

R. Shanker is particularly grateful to S.K. Mukerjee, Chairman of the Indian National Committee, IGCP, and Director General, Geological Survey of India, to C. Tripathi, Co-Chairman, National Working Group, IGCP, and to Director General, Geological Survey of India, Northern Region, for permission to publish and for the facilities provided.

As editors of this volume, we extend our grateful thanks also to numerous individuals in many countries for their assistance in the preparation of this volume in its various stages. In particular, we would like to acknowledge the help of the following:

Helen E. Appleton, Nottingham
David Bate, British Geological Survey, Keyworth
James B. Cathcart, US Geological Survey, Denver
Thomas Deans, London
David E. Highley, British Geological Survey, Keyworth
Andrei V. Ilyin, Institute of the Lithosphere, Moscow
Mohammed Karim Lamrani, Director General, Office Chérifien des Phosphates, Casablanca
Jacques Lucas, Institut de Géologie, Strasbourg
Guerry H. McClellan, International Fertilizer Development Center, Muscle Shoals
Leonidas Osse S., Corporacion de la Fomento Produccion, Santiago
Liliane Prévôt, Institut de Géologie, Strasbourg
Jo A.J. Proctor, Dartford, Kent
Guillermo P. Salas, Consejo de Recursos Minerales, Mexico City
Caroline Savage, British Sulphur Corporation Limited, London.

We would like to give very special thanks to our respective wives, Agnes, Claude, and Claire, for their considerable patience and understanding during the preparation of this volume over the last four years.