Contents

Preface ix
Acknowledgements xii

1. Energy, probability and electrons 1
 1.1 Energy quantization 1
 1.2 The wave–particle duality, observations and probability 6
 1.3 Wavefunctions and the indeterminacy principle 10

2. An introduction to the dynamics of microsystems 18
 2.1 Operators and observables 18
 2.2 Expectation values of observables 21
 2.3 Commuting operators 23
 2.4 Important operators 24
 2.5 The Schrödinger equation 27
 2.6 A simple system: translational motion of a particle 30
 2.7 Relativity theory, quantum mechanics and spin 42

3. One-electron atoms: atomic orbitals 45
 3.1 Wave equation and angular momentum 45
 3.2 Atomic orbitals 51
 3.3 Spin 67

4. The one-electron molecule H$_2^+$: molecular orbitals 70
 4.1 The wave equation and molecular orbitals 70
 4.2 Molecular orbitals from atomic orbitals 74
 4.3 Classifying molecular orbitals and electronic states 75
5. Many-electron atoms and the orbital concept 85
 5.1 Wavefunction and the Pauli principle 85
 5.2 Electron repulsion: orbitals, an approximation 90
 5.3 Total electronic energy 95
 5.4 Orbital energies 97
 5.5 Electronic configurations 101
 5.6 Beyond electronic configurations: terms, levels, states 105
 5.7 Density-functional theory and Kohn–Sham orbitals 111
 5.8 Relativistic corrections 112

6. Orbitals in diatomic molecules 114
 6.1 The approximations 114
 6.2 The simple diatomics H₂, He₂⁺ and ‘He₂’ 115
 6.3 Molecular orbitals in X₂ molecules 120
 6.4 Heterodiatomic molecules 129
 6.5 Electronegativity 136

7. Orbitals in polyatomic molecules 139
 7.1 New features relative to diatomic molecules 139
 7.2 Molecular orbitals in AHₙ molecules 140
 7.3 Other molecules and quantitative m.o. theory 156

8. Molecular orbitals and electron pair bonding 167
 8.1 Atoms in molecules and structural formulae 167
 8.2 The theory of atoms in molecules 169
 8.3 Structural formulae and non-independent bonds 175
 8.4 Orbitals and electron pairing in valence-bond theory 180
 8.5 Molecular geometry and the valence-shell electron pair repulsion model 185
 8.6 Canonical molecular orbitals and localized functions 193
 8.7 Use and misuse of the hybrid orbital concept 201

9. π Molecular orbitals: conjugation and resonance 205
 9.1 The σ–π separation 205
 9.2 The CO₂ molecule and the CO₃²⁻ ion 206
 9.3 The ethylene and acetylene molecules 214
 9.4 The butadiene molecule 217
 9.5 The benzene molecule 223
 9.6 π Electron densities and bond orders 227
Contents

10. Patterns in localized chemical bonds 230
 10.1 Back to structural formulae 230
 10.2 Bond energies and the Periodic Table 232
 10.3 The octet rule and the writing of structural formulae 236
 10.4 The conservation of the sum of bond orders 242

11. The concept of molecular orbitals in other systems 245
 11.1 The C₆₀ molecule 245
 11.2 Octahedral complexes of transition metals 248
 11.3 The band theory of solids 258

12. Orbitals in action 265
 12.1 Orbitals and chemical reactivity 265
 12.2 Orbitals and spectroscopy 273

Answers to problems 290

References 303

Index 311