CONTENTS

Preface ... xi

1 ELECTRONIC SYSTEMS: A CENTURY OF PROGRESS 1

1.1 Electronic Devices: An Overview 3
The Diode: 3 • The Vacuum Triode: 5 • The Transistor and Integrated Circuits: 6

1.2 Wireless Communication: A New Era 8
Electrical Tuning: 9 • Vacuum Tube Circuits: 10 • The Superheterodyne Receiver: 11

1.3 The Telegraph and Telephone: Wide-Scale Interconnections 13
The Telegraph: 13 • Basic Telephone System: 14 • Analog Telephone Signals: 15 • Digital Telephone Systems: 17

1.4 Television: Time-Dependent Visual Images 19
Analog Television: 20 • Cathode-Ray Tube Display: 21 • Video Camera Devices: 23 • Digital Television: 26

1.5 The Electromagnetic Spectrum: A Multitude of Uses 28
Frequency Spectrum: 29 • Radar: 30 • Communications Satellites: 32

1.6 Computers: Transistors By the Millions 35
Logic Circuits: 35 • A Basic Computer: 38 • Memories: 42

1.7 Integrated Circuits: Shrinking Device Sizes and Increased Complexity 45

REFERENCES ... 47
PROBLEMS ... 49
COMPUTER SIMULATIONS 56

2 THE SEMICONDUCTOR JUNCTION DIODE: THE BASIS OF MODERN ELECTRONICS 59

2.1 Electrons and Conduction: A Look at Elementary Processes ... 60
2.2 Semiconductors: The Role of Electrons and Holes 65
 An Intrinsic Semiconductor: 67 • An n-type
 Semiconductor: 68 • A p-type Semiconductor: 69
2.3 The Junction Diode: A Quintessential Semiconductor Device 72
 The Built-in Potential: 75 • An External Potential: 76
2.4 The Junction Diode: Its Terminal Characteristics 77
 Current of a Diode: 78 • SPICE Model: 81
2.5 A Circuit with a Diode: Dealing with a Nonlinear Element 83
 Load Line: 84 • An Iterative Approach: 85 • SPICE
 Solution: 87
2.6 Modeling the Junction Diode: The Role of Approximations 92
 The Ideal Diode Switch Model: 92 • Constant
 Forward-Biased Voltage Diode Model: 94 • Diode Model
 with a Series Resistor: 95
2.7 The Photovoltaic Cell: Photon–Semiconductor Interactions 100
 Photons: 100
2.8 Light-Emitting and Laser Diodes: Optical Communication 107
 Light-Emitting Diodes: 107 • Light-Emitting Diode
 Applications: 108

REFERENCES 116
PROBLEMS 118
COMPUTER SIMULATIONS 129

3 THE BIPOLAR JUNCTION TRANSISTOR: AN ACTIVE ELECTRONIC DEVICE 133
3.1 The Common-Base Configuration: A Physical Description 137
3.2 The Common-Emitter Configuration: Same Device, Different 143
 Perspective
 Equivalent Circuit: 143 • Transfer Characteristic: 144 •
 SPICE Simulation Model: 146
3.3 The Common-Emitter Equivalent Circuit: Solving Transistor 153
 Circuits
 An External Base Bias: 154 • An Emitter Resistor: 155 • An
 Emitter-Follower Circuit: 158
3.4 Digital Logic Circuits: Static and Dynamic Characteristics 164
 Transistor Operating Regions: 165 • Capacitive Load: 166 •
 Logic Families: 170 • Transistor-Transistor Logic: 173
3.5 Amplifier Circuits: Small-Signal Behavior 177
 Analog Signals: 178 • Capacitive Coupling: 179 •
 Small-Signal Equivalent Circuit: 181 • Hybrid-π Transistor
 Model: 183
3.6 The PNP Transistor: A Complementary Device 190
 Complementary Symmetry: 193
4 THE METAL-OXIDE FIELD-EFFECT TRANSISTOR: ANOTHER ACTIVE DEVICE

4.1 Field-Induced Carriers: The Physics of a MOSFET Device
SPICE Model: 226

4.2 The Common-Source Equivalent Circuit: Applications
A Common-Source Amplifier: 233 • A Source-Follower Amplifier: 235

4.3 MOSFET Logic Gates: Basic Considerations
An Elementary Logic Inverter: 246 • A MOSFET Inverter Gate: 247

4.4 Integrated-Circuit Logic Gates: No Resistors
An Enhancement-Type Load: 253 • Substrate Bias: 255 • A Depletion-Type Load: 257

4.5 Complementary Metal-Oxide Semiconductor Logic Gates: An Energy-Efficient Logic Family
The p-Channel MOSFET Device: 262 • A CMOS Inverter Gate: 264 • CMOS Logic Gates: 268

4.6 Logic Memories: The Basis of Megabytes of Storage
A MOSFET Bistable Circuit: 272 • A Flip-Flop Memory
Element: 274 • A Memory Array: 275 • The Dynamic Memory Array: 278

REFERENCES 198
PROBLEMS 199
COMPUTER SIMULATIONS 210
DESIGN EXERCISES 214

5 NEGATIVE FEEDBACK AND OPERATIONAL AMPLIFIERS 227

5.1 Negative Feedback: A Key Concept
Decibel Notation: 304 • Reducing Distortion: 305 • Additional Benefits of Negative Feedback: 309

5.2 Stability: Not All Amplifiers Are Equal
Amplifier Phase Shift: 317 • Stability: 321

5.3 Analysis of Operational Amplifier Circuits: Basic Considerations
Ideal Op Amp – Input Virtual Short: 327 • Op Amp Limitations: 331

5.4 Preemphasis and Deemphasis Circuits: Design Examples 339
5.5 A Wide-bandwidth Amplifier: A Design Example

Preemphasis Circuit: 340 • Deemphasis Circuit: 341 • Design: 342 • SPICE Verification: 344

5.5.1 Single-Stage Amplifier: 347 • Two-Stage Amplifier: 348 • Three-Stage Amplifier: 349 • Final Design: 350 • SPICE Verification: 352

REFERENCES 355
PROBLEMS 356
COMPUTER SIMULATIONS 363
DESIGN EXERCISES 366

6 ELECTRONIC POWER SUPPLIES 369

6.1 Rectifiers: From Alternating to Direct Current 371
The Half-Wave Rectifier: 371 • Full-Wave Rectifier – A Center-Tapped Transformer: 373 • Full-Wave Rectification – A Bridge Rectifier: 374

6.2 Filters: Reducing Load-Voltage Fluctuations 380
Capacitor Filters – Half-Wave Rectifiers: 380 • Capacitor Filters – Full-Wave Rectifiers: 383 • A Nonideal Transformer: 384

6.3 Zener Diode Regulator: An Improved Output Voltage 390

6.4 An Electronic Regulator: Nearly Ideal Power Supply 396
A Basic Operational Amplifier Regulator: 396 • An Electronic Regulator with a Zener Diode Voltage Reference: 398 • An Electronic Regulator with a Band-Gap Voltage Reference: 399 • The Electronic Switching Regulator: 404

6.5 Batteries: An Increasingly Important Electrical Energy Source 406
REFERENCES 411
PROBLEMS 412
COMPUTER SIMULATIONS 419
DESIGN EXERCISES 421

APPENDIX A FABRICATION OF INTEGRATED CIRCUITS 423

A.1 Integrated Circuit Transistors 424
A.2 Fabrication Processes 427
Crystal Growth and Wafer Fabrication: 427 • Epitaxial Deposition: 428 • Doping: Thermal Diffusion: 428 • Doping: Ion Implantation: 429 • Thermal Oxidation: 429 • Optical Lithography: 429 • Etching: 431 • Thin Films: 431

A.3 Summary 432
REFERENCES 432
APPENDIX B THE DESIGN PROCESS

B.1 Bipolar Junction Transistor Circuits (Chapter 3)
 A Single-Transistor Logic Inverter: 435 • Design: 435 •
 A Single-Transistor Small-Signal Amplifier: 436 • Design: 437

B.2 Metal-Oxide Field-Effect Transistor (Chapter 4)
 Biasing a MOSFET Circuit: 439 • Design: 439

B.3 Negative Feedback and Operational Amplifiers (Chapter 5)
 A Small-Signal Amplifier: 442 • Design: 443

B.4 Electronic Power Supplies (Chapter 6)
 Power Supply With a Selectable Output Voltage: 445 •
 Design: 445

REFERENCES

Index