INDEX

acceptor atom, 69
Aiken, Howard, 35
Amâtre, André Marie, 13
ampere-hour, 408
Armstrong, Edwin Howard, 10–12, 133, 434
Atanasoff, John V., 220
Babbage, Charles, 35
band-gap energy, 101
band-gap voltage reference, 399–401
Bardeen, J., 59
batteries, 406–10
alkaline-manganese dioxide, 407
carbon-zinc, 406–7
discharge, 408–9
reversible, 408
zinc-chloride, 407
battery backup, 409–10
Bell, Alexander Graham, 13, 300
bipolar junction transistor, 133–13
characteristics, 134
NPN, 134–6
PNP, 190–6
bistable circuit, 272–4
Black, Harold, 299
Boole, George, 36
Boot, Henry, 32
Brady, Édouard, 8
Bretan, W. H., 59
Braun, Ferdinand, 8, 21, 28
Bue, J. L., 173
Bush, Vannevar, 35
Campbell, Stephen A., 432
capacitive coupling, 179–81
capacitive load, 166–70
capacitor–resistor logic circuit
charge storage, 244–5
power dissipation, 246
carrier multiplexing, 300
cathode-ray tube, 21–3
central processing unit, 40–2
channel-length modulation parameter, 227
charge storage, 278
Christie, Samuel, 374
Clarke, Arthur C., 32
Clarke orbit, 32–3
CMOS logic gate, 262–9
dynamic response, 267–8
inverter gate, 264–8
p-channel device, 262–4
supply current, 266–7
transfer characteristics, 266
CMOS NAND gate, 268–9
CMOS NOR gate, 268–9
cohere, 8
common-base transistor, 137–40
characteristics, 139
current gain, 138
physical description, 137–8
small-signal equivalent circuit, 139
common-emitter transistor, 143–9
current gain, 143
hybrid-i model, 183–4
logic inverter, 164–70, 435–6
mutual conductance, 184
saturation, 146
small-signal amplifier, 436–9
small-signal equivalent circuit, 181–3
SPICE simulation, 146–9
transfer characteristics, 144–5
common-source transistor, 231–5
amplifier, 233
biasing, 439–42
mutual conductance, 234
small-signal equivalent circuit, 234
SPICE simulation, 241–4
transfer characteristics, 231–3
complementary symmetry, 193–6
cutoff, MOSFET, 223
czechralski process, 427
451
data register, 39–42
DeForest, Lee, 5, 8, 11, 133
declenotation, 304–5
demphasis circuit, 339, 341–2
design, 342–4
SPICE, 344–6
Dennard, Robert H., 220
detector, 4, 12
diffusion, 78, 428
digital logic circuits, 164–5
diode
constant voltage model, 94–5
logic gates, 36–7
semiconductor, 4, 72–7
series resistor model, 95–6
SPICE, 81–2
switch model, 92–4
terminal characteristic, 77–82
vacuum, 3–4
donor atom, 68
doping, 68
ion implantation, 429
thermal diffusion, 428
drift velocity, 63
Dunswoody, Henry H. C., 4
Early effect, 146–7
Early, J., 146
Eccles-Jordan flip-flop, 274
Edison effect, 3
electron, 60
electron volt, 101
electronic regulator, 370
electronics, 1
energy storage, 369
epitaxial deposition, 428
etching, 431
feedback
negative, 289–301, 303–10
positive, 10–1, 272–4, 316
fiber-optic system, 113
filter, 370, 380–4
full-wave, 383–4
half-wave, 383–2
Fleming, Sir John Ambrose, 3
flip-flop memory element, 274–5
free electron, 67
frequency multiplexing, 300
frequency spectrum, 29–30
GaAs-Perot cavity, 112
gain margin, 321
gallium arsenide
laser, 112–13
light-emitting diode, 108
germanium, 65
Haynes-Shockley experiment, 137
Heaviside, Oliver, 8
Hertz, Heinrich Rudolf, 8, 28
hole, 67
ideal operational amplifier, 327–31
capacitive feedback circuit, 329–30
inverting amplifier, 328
inverting and noninverting input, 328–9
noninverting amplifier, 328, 442–5
summing amplifier, 329
virtual short, 327
induced carriers, 221–2
Institute of Electrical and Electronic Engineers, 8
Institute of Electrical Engineers, 8
Institute of Radio Engineers, 8, 11
integrated circuits, 7, 423–33
BiCMOS, 425
fabrication, 427–32
crystal growth, 427–8
doping
ion implantation, 429
thermal diffusion, 428
epitaxial deposition, 428
etching, 431
optical lithography, 429–31
thermal oxidation, 429
thin films, 431–2
wafer fabrication, 427–8
MOSTET, 426–7
NPN transistor, 425–6
physical dimensions, 423–4
intermediate frequency, 12–13
iteration, 85–7
junction diode, 72–83
built-in potential, 75–6
current, 78–83
depletion region, 74–5
ideality factor, 78
modelling, 92–6
SPICE, 81–2
terminal characteristics, 77–83
Kibby, Jack, 7
klystron, 31–2
Leclanché, Georges, 406
light-emitting diode, 107–8
display, 109–11
infrared control, 110–11
Lilienfeld, John Edgar, 217
load line
common-emitter transistor, 134–5
common-source transistor, 253–4
diode, 84–7
local oscillator, 12–13
Lodge, Oliver Joseph, 8
logic families
CMOS, 262–9
diode-transistor, 171–2
direct coupled, 170–1
Index

resistor-transistor, 170-1
transistor-transistor, 164, 173-4
logic memory, 220-1, 272-80
magnetron, 32
majority carriers, 76
Marconi, Guglielmo, 8, 21, 28
Maxwell, James Clerk, 8
memory
disk, 44
ferrite core, 42-3
flip-flop, 38
tape, 43
memory array, 275-80
charge storage, 278
dynamic, 278-80
flip-flop cell, 275-8
one-transistor cell, 220-1, 279
random access, 278
static, 278
three-transistor cell, 279
metal-oxide field-effect transistor, 6, 24, 217-80
drain characteristics, 6, 219
logic gate, 37-8, 247-50
physics, 221-3
SPICE, 226-8
structure, 218
switch, 220
transfer characteristic, 219-20
Millikan, Robert A., 60
minority carriers, 76
mobility, 62
Moore, Gordon, 45-6
Morse, Samuel F. B., 13
MOSFET inverter gate, 247-50
depletion-type load, 257-8
enhancement-type load, 253-5
full time, 249-50
high-output voltage, 248
low-output voltage, 248
rise time, 248
MOSFET NAND gate, 258-9
MOSFET NOR gate, 258-9
MOSFET p-channel device, 262-4
multiplexing
analog, 16-17, 300
digital 17-19
mutual conductance
common-emitter transistor, 184
common-source transistor, 254
Napier, John, 35
negative feedback, 299-327
benefits, 309-10
distortion reduction, 305-9
feedback fraction, 303
Oersted, Hans Christian, 13
operational amplifier
analog computer, 301
ideal, 327-31
integrated circuit, 301-2
limitations
frequency response, 331-2
gain-bandwidth product, 332
slow rate, 334
single supply voltage, 350
wide-bandwidth amplifier, 346-55
operational amplifier regulator, 396-8
equivalent circuit, 397
power supply rejection ratio, 397
optical lithography, 429-31
Pascal, Blaise, 35
Pearson, G. L., 59
phase margin, 321
photodiode, 24-5
photon, 23, 100
photoreceptor, 430
phototransistor, 100-4
current, 102
equivalent circuit, 102-3
power output, 103
structure, 101
Pickard, Greenleaf W., 4
Pierce, John R., 33, 39
pinchoff, MOSFET, 225
PNP transistor, 190-6
common-base model, 191
common-emitter model, 192
current carriers, 191-2
preemphasis circuit, 339-41
design, 342-4
SPICE, 344-6
quantum dot, 47
radar, 30-2
Randall, John, 32
random-access memory, 220-1, 275-80
rectification, 369
rectifiers, 371-6
full-wave
bridge, 376-8
center-tapped transformer, 373-4
half-wave, 371-3
regeneration, 10-11
regulator
electronic, 396-405, 445-9
ten diode, 390-4
relay, 36-7
resistor, 61
ripple voltage, 381
RS flip-flop, 275
sampling, 17-18
satellite, 32-5
saturation, MOSFET, 225
Schawlow, Arthur L., 111
Schottky gate, 217

INDEX 453
Schottky transistor, 174
semiconductor, 61–9
intrinsic, 66–8
n-type, 68–9
p-type, 69
Shannon, Claude E., 36
Shockley, William, 59, 217, 390
silicon, 67
small-signal behavior, 177–85
ac component, 178
analog signals, 178
quasiconcent component, 178–9
Smith, Willsoughby, 100
source-follower amplifier, 235–8
output resistance, 237–8
small-signal equivalent circuit, 237
transfer characteristic, 236
stability, 316–22
gain margin, 321
phase margin, 321
phase shift, 317–21
well-behaved response, 322
substrate bias, 235–7
body-bias coefficient, 256
SPICE, 256–7
threshold voltage, 256
sun, spectral intensity, 100
superhetemodyne receiver, 11–13
switching regulators, 404–5
telegraph, 13–14
telephone
analog, 11–17, 299–300
digital, 17–19
television, 19–26
analog, 20–1
digital, 26–8, 35
thermal oxidation, 429
thermal potential, 79
thermionic valve, 3–6
thin film, 431–2
threshold voltage, 223
totem-pole output, 174
Townes, Charles H., 111
transconductance parameter, 224
transfer resistor, 59
transformer, noisel, 384–7
triode, 5–6
tuning, 9–10
vacuum tube, 3–6
Varian, Russell, 31
Varian, Sigurd, 24
video iconoscope, 24
virtual short, 327
Volta, Alessandro, 13, 406
wavelength, 28
Wheatstone, Charles, 374
wide-bandwidth amplifier, 346–55
single stage, 346–7
single supply voltage, 350
two stage, 348
Widlar, Robert, 301
Wilson, A. H., 59
wireless, 8–13
Zener, Clarence, 390
zener diode, 390–1
equivalent circuit, 391–2
regulator, 392–4
voltage reference, 398–9
Zworykin, Vladimir K., 19, 23, 23