Structure and Bonding in Crystalline Materials

One of the motivating questions in materials research today is: how can elements be combined to produce a solid with specified properties? One part of the answer to this question lies in the fundamental relationship between the composition, structure and bonding in crystalline materials. This book is intended to acquaint the reader with established principles of crystallography and bonding that are needed to understand this relationship.

The book starts with an introduction to periodic trends and then describes the atomic structure of crystalline solids, the experimental interrogation of crystalline structure, the origin of the cohesive forces that stabilize crystalline structures, and how these cohesive forces vary with the elements in the solid. The book finishes by describing a number of models for predicting phase stability and structure.

Containing a large number of worked examples, exercises, and detailed descriptions of numerous crystal structures, this book is primarily intended as an advanced undergraduate or graduate level textbook for students of materials science who are preparing to conduct research. However, it will also be useful to scientists and engineers who work with solid materials.

GREGORY S. ROHRER is a Professor of Materials Science and Engineering at Carnegie Mellon University. Prof. Rohrer was born in Lancaster, PA, in 1962. He received his bachelor's degree in Physics from Franklin and Marshall College in 1984 and his Ph.D. in Materials Science and Engineering from the University of Pennsylvania in 1989. At CMU, Prof. Rohrer is the director of the NSF sponsored Materials Research Science and Engineering Center. His research is directed toward understanding how the properties of surfaces and internal interfaces are influenced by their geometric and crystallographic structure, their stoichiometry, and their defect structure. Prof. Rohrer is an associate Editor for the Journal of the American Ceramic Society and his research earned a National Science Foundation Young Investigator Award in 1994. Cambridge University Press 0521663288 - Structure and Bonding in Crystalline Materials - Gregory S. Rohrer Frontmatter/Prelims <u>More information</u>

Structure and Bonding in Crystalline Materials

GREGORY S. ROHRER

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, VIC 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Gregory S. Rohrer 2001

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeset in Times NR MT 10/13pt, in QuarkXPress[™] [SE]

A catalogue record for this book is available from the British Library

ISBN 0 521 66328 8 hardback ISBN 0 521 66379 2 paperback

Contents

Preface		
1.	Introduction A. Introduction	1 1
	B. Periodic trends in atomic properties	2
	C. Bonding generalizations based on periodic trends in the	
	electronegativity	4
	D. Generalizations about crystal structures based on periodicity	12
	E. The limitations of simple models	21
	F. Problems	25
	G. References and sources for further study	27
2.	Basic Structural Concepts	29
	A. Introduction	29
	B. The Bravais lattice	29
	C. The unit cell	41
	D. The crystal structure. A Bravais lattice plus a basis	44
	E. Specifying locations, planes and directions in a crystal	46
	F. The reciprocal lattice	50
	G. Quantitative calculations involving the geometry of the lattice	56
	H. Visual representations of crystal structures	59
	I. Polycrystallography	69
	J. Problems	81
	K. References and sources for further study	84
3.	Symmetry in Crystal Structures	88
	A. Introduction	88
	B. Symmetry operators	88
	C. The 32 distinct crystallographic point groups	92
	D. The 230 space groups	105
	E. The interpretation of conventional crystal structure data	121
	F. Problems	128
	G. References and sources for further study	133

CONTENTS

4.	Cry	/stal Structures	135
	Α.	Introduction	135
	В.	Close packed arrangements	135
	C.	The interstitial sites	140
	D.	Naming crystal structures	143
	Ε.	Classifying crystal structures	145
	F.	Important prototype structures	147
	G.	Interstitial compounds	177
	Η.	Laves phases	179
	I.	Superlattice structures and complex stacking sequences	182
	J.	Extensions of the close packing description to more complex	
		structures	188
	K.	Van der Waals solids	190
	L.	Noncrystalline solid structures	191
	М.	Problems	197
	N.	References and sources for further study	202
5.	Dif	fraction	205
	Α.	Introduction	205
	В.	Bragg's formulation of the diffraction condition	205
	C.	The scattering of X-rays from a periodic electron density	206
	D.	The relationship between diffracted peak intensities and atomic	
		positions	218
	E.	Factors affecting the intensity of diffracted peaks	232
	F.	Selected diffraction techniques and their uses	242
	G.	Problems	251
	Η.	Review problems	259
	Ι.	References and sources for further study	261
6.	Se	condary Bonding	263
	Α.	Introduction	263
	В.	A physical model for the van der Waals bond	267
	C.	Dipolar and hydrogen bonding	278
	D.	The use of pair potentials in empirical models	280
	Ε.	Problems	282
	F.	References and sources for further study	284
7.	lon	ic Bonding	286
	Α.	Introduction	286
	В.	A physical model for the ionic bond	289
	C.	Other factors that influence cohesion in ionic systems	302
	D.	Predicting the structures of ionic compounds	308

CONTENTS

	E. Electronegativity scales	313
	trends	317
	G. Pair potential calculations of defect properties in ionic	
	compounds	318
	H. Problems	319
	I. References and sources for further study	323
8.	Metallic Bonding	326
	A. Introduction	326
	B. A physical model for the metallic bond: free electron theory	328
	C. Failures of the free electron theory	348
	D. Electrons in a periodic lattice	348
	E. Correlation of the physical models with the phenomenological	057
	trends	357
	r. Empirical potentials for calculating the properties of delects	357
	G Problems	358
	H. References and sources for further study	361
9	Covalent Bonding	363
0.	A. Introduction	363
	B. A physical model for the covalent bond in a molecule	367
	C. A physical model for the covalent bond in a homopolar crystal	376
	D. A physical model for the covalent bond in a polar crystal	385
	E. Bands deriving from d-electrons	401
	F. The distinction between metals and non-metals	406
	G. The distinction between covalent and ionic solids	407
	H. The cohesive energy of a covalently bonded solid	410
	I. Overview of the LCAO model and correlation with	
	phenomenological trends	412
	J. The bandgap	414
	 A. Problems Beforences and sources for further study 	415
10		420
10.	Models for Predicting Phase Stability and Structure	424
	A. Introduction B. Models for prodicting phase stability	424
	C. Eactors that determine structure in polar-covalent crystals	420
	D Structure stability diagrams	461
	E. Problems	473
	F. References and sources for further study	474

CONTENTS

Appendix 1A:	Crystal and univalent radii	477
Appendix 2A:	Computing distances using the metric tensor	480
Appendix 2B:	Computing unit cell volumes	482
Appendix 2C:	Computing interplanar spacings	483
Appendix 3A:	The 230 space groups	485
Appendix 3B:	Selected crystal structure data	488
Appendix 5A:	Introduction to Fourier series	512
Appendix 5B:	Coefficients for atomic scattering factors	515
Appendix 7A:	Evaluation of the Madelung constant	518
Appendix 7B:	Ionic radii for halides and chalcogenides	521
Appendix 7C:	Pauling electronegativities	526
Appendix 9A:	Cohesive energies and band gap data	527
Appendix 9B:	Atomic orbitals and the electronic structure of the	
	atom	529
Index		533

Preface

This book resulted from lecture notes that I compiled while teaching a course of the same name in the Department of Materials Science and Engineering at Carnegie Mellon University. When I began teaching this class in the early 1990s, there were already excellent textbooks on crystallography, solid state physics, and structural solid state chemistry. However, none of these books by themselves were entirely appropriate for the course I intended to teach to graduate students in materials science and engineering. Therefore, I have attempted to combine the subject matter in a way that would be both appealing and useful for materials scientists and engineers. Included in the book are compilations of data that are a useful resource for students and researchers considering basic structural problems. Much of the material in the book is derived from secondary sources and, to the best of my ability, I have assigned credit to these books in the last section of each chapter, under 'References and Sources for Further Study'. Books by Burger (Contemporary Crystallography), Sands (Introduction to Crystallography), Harrison (Electron Structure and the Properties of Solids), West (Solid State Chemistry and its Applications), Wells (Structural Inorganic Chemistry), Kittel (Introduction to Solid State Physics), and Ashcroft and Mermin (Solid State Physics) were especially useful and it is appropriate that I draw attention to them at the outset.

At Carnegie Mellon University, this course is taught during a 14 week semester consisting of approximately 52 hours of lecture. However, by prioritizing material according to the goals of an individual class, it should be possible to use this book as the basis for abbreviated courses.

This book is the outcome of a National Science Foundation Grant. Specifically, the development of this book was the educational component of a Young Investigator Award (DMR-9458005) that supported my research and educational activities for five years. Assistance also came from the more than 200 students who have been enrolled in my course over the years. The students continually helped me refine the text by pointing out errors and ambiguities. Dr Matt Willard deserves special mention for providing me with extensive detailed comments on an early draft while studying for his Ph.D. qualifying exam. Several other students who worked with me at CMU (Prof. Richard L. Smith, Dr Jennifer B. Lowekamp, and David M. Saylor) contributed figures for this book. My wife, Dr C. Lane Rohrer, was the greatest sustained source of editorial comment. Cathy edited numerous drafts of this book and even contributed several of the sections Cambridge University Press 0521663288 - Structure and Bonding in Crystalline Materials - Gregory S. Rohrer Frontmatter/Prelims More information

PREFACE

where my knowledge was inadequate. While the input I received from Cathy and others has made this a better book, I remain responsible for its deficiencies and any errors that might remain. Finally, I thank my father, C.E. Rohrer, who initially inspired my career in science and to whom I dedicate this book.

G.S. Rohrer Pittsburgh February, 2001