Index

Page numbers in italics refer to figures, page numbers in bold refer to tables.

Abaristophora 299
Abatrus pseudoviviparous 187
Abingdon
radio carbon dates for organic deposits 268
tundra vegetation pollen 268
acanthomorphs, first appearance 112
Aconeeras 100, 104, 106
Acteonella borneensis 158
Acteonella crassa 158
Actinacis 174, 178
adaptation, functional 59
adaptive advantage 59
adaptive radiation
bivalves 135, 136–7
slowness of 137
Africa
change in fauna during the Miocene 365
dispersal routes for _Homo sapiens_ 387
early _Homo sapiens_ 386
Early Miocene mammal faunas 357–8
East Africa, two assemblages 357
Mid Miocene faunas, spatial analysis
shows palaeoenvironmental change 358, 359, 361–2
see also El Kef, Tunisia; Ethiopia; Kenya
Africa, West
and eastern Brazil
fish show no special relationship 115
similar fossil fish faunas 113–14
Africa–Europe land link 320, 322
African-Arabian Shield 9
African plate, result of northward movement 21
Afro–Arabian plate
effects of collision with Eurasia 161–2, 356
Late Miocene mammalian fauna 364–5
Afro-Arabia and south-west Asia
early Miocene land bridge 356
few Late Miocene sites 360–1
agriculture
early, Upper Thames basin 279
 clearance of land for 283–4
 intensification of 285
Alaska, coal seams, entire leaves 247
algal symbiosis 164, 165
and global change 177–8
in scleractinian corals 169–75
evidence of 170, 171, 172–3
from the K–T boundary to the
Paleocene 174
historical overview 170, 172–3
zygocorals 172–3, 180
background 169–70
disruption of habitats 177
extent 170
and Lazarus corals 174, 175, 177–8, 180
see also corals; reef communities
Alligator mississippiensis 330
Alligator sinensis 330
alligators 330
allopatric speciation 120
Almucilaris 187
Alnus 278, 286
little pollen found on drier terrace gravel
soils 278
main pollen 278
α- and β-diversity
covariation of 146
<table>
<thead>
<tr>
<th>INDEX</th>
<th>475</th>
</tr>
</thead>
</table>

need for γ-diversity 146, 148
α-diversity, bivalves 145
amber
Baltic, earliest records of extant insects 298
insects preserved in 288, 294
Americas, human colonization debate 389
ammonites
boreal families died out by early Aptian 100
distributions distinguish Mesozoic faunal realms 99, 100
diversity linked to long-term sea-level changes 102, 103
effect on faunas of periodic rapid rises in sea level 102–3
late Barremian event 104–5
mid Hauterivian event 104
mid Valanginian event 103–4
environmental disposition 98
modes of life 98–9
uncoiling forms 99
Ammonioidea 97
declines and extinction 98
amphibians
Laurasian and Gondwana faunas distinct in Cretaceous 317–18
Pleistocene, North America 331
range contraction during glacial phases 331
amphibians, reptiles and birds, a biogeographical review 316–32, 393
Cretaceous events 321–5
climates 323–4
corridors 322–3
eustatic sea-level changes 324
fragmentation of Gondwana 321–2
K–T extinction event 325
distribution patterns linked to those of continental areas 316
Early Cretaceous faunas 317–19, 320
Neogene events 329–31
geographical 329–30
Miocene climate 330–1
Pliocene cooling, Pleistocene glaciations in Northern continents 331
Paleogene events 326–9
Early Paleogene 326–8
Paleocene–Oligocene climate deterioration 328–9
Andrias 322, 328
Anemia 236
Anguria 157
angiosperms 207
background 207–9
close relationship with climate 246, 249
diversification, causal factors 219–21
angiosperm biology 219–20
palynological patterns and mid-Cretaceous global events 220–1
early, association with ephidroids 219
establishing the pattern of vegetational change 209–19
discrepancies and recognition problems 211–12
diversity and abundance through the Cretaceous, mid-palaeolatitudes 211–13
in situ macrofloras preserved, Wyoming 213
rapid diversification of pollen species 215, 218
rapid mid Cretaceous increase in diversity and abundance 213
studies 209–10
temporal trends and palaeolatitudes 215–19
first recognition, based on fossil pollen grains 209
and high turn over of Early Cretaceous insects 289–90
and insect turnover in the Early Cretaceous 289–90
radiation of affecting insects 297, 298
within-flora diversity
geographical patterns 216, 217–8
trends in 211, 212, 214
see also flowering plants, Cenozoic
Anisomyon 150
Anomalinitoides newmanae, survived the K–T extinctions 65
anomalodesmatans 136, 137
Arctic forms 144
deep sea 140
shallow water 140
anoxia
in shallow-water facies 8
in warm deep saline water 9–10
see also oceanic anoxia events (OAes)
Antarctica 334
bivalves 142, 142
critical separation from Australia 31
deglaciation of 28
polar ice at Terminal Eocene Event 342
polar ice sheets 26, 58
Apodemus sylvaticus 370
INDEX

Aquilapollenites-type pollen 219
Arabia, eastern, Acteonellidae 158
Arabian Plate 357
 Late Miocene sites 364
 pivotal for mammalian dispersal out of
 Africa 364
archosaurs
 distribution across Pangea 319
 endemism and dispersal, Laurasia and
 Gondwana 320
Gondwana fauna, vicariant origin and
diversification 319
aroids 136, 137, 139, 143
Arctic Ocean, present, and global climate
change 32
Ardipithecus ramidus 381
 aridity 330
 Arabia 364
 Cenozoic 28, 29
 Cretaceous 10, 15
 Late Pleistocene, and extinctions 120
 and the Messinian salinity crisis 351, 360
Quaternary, expansion and contraction of
desert zones 368
Artemisia 268, 269, 273
 suggests aridity 272
Artiodactyla 339
Arvicola terrestris 370
Asia
 central, spread of stage three fauna from
 375
 Cretaceous, placental dominant 334
 deposition in Himalayan foredeep 357
East, Mid Miocene
 high species diversity 364
 Siwalik deposits, faunal trends 364
 eastern, drop in mammalian diversity
 395
effects of Cretaceous climates 323
 likely source of North American
 immigrant Puercan mammals 339
Mongolia
 E-O boundary, faunal turnover at 344
 P-E boundary, extinction and
 origination at 339-40
West 365
 Mid Miocene faunal community
 structure 363
Asimata 144
Astraea 157
Atlantic north–south passage 6, 17, 19
Atlantic Ocean 20
 continued to widen during the Cenozoic
 21
Atlantic/Sub-Boreal transition, delimited by
 decline in lime pollen 284
Atmospheric General Circulation Models
 (AGCMs) 245
Atractosteus strausi 117
Australasia 334
Australia
 colonization by Homo sapiens 387
 proximity to south-east Asia 330
 Riversleigh locality, lizard diversity 330
 Southeast, Cretaceous δ18O-isotope
 temperatures suggest polar freezing
 48-9
Australia–Pacific plate boundary 21
australopithecines 379
 robust 379, 382
Australopithecus anamensis 381
 β-diversity, in bivalves 145-6
Babylonia lutosa, shell damage 152
Beaufort Formation, Arctic Canada, insect
assemblages 309
belemnites 97
 bipolar distribution, late Cretaceous 101,
 102
 boreal families died out by early Aptian
 100
 nektic 99
Northern Hemisphere, Tethyan spread 99
 rise of Dinitobilidae 100, 101
Tethyan families died out by end-
 Cenomanian 100
Bering corridor 322, 328, 345
Bering Strait 101, 106, 160, 234
 opening and closure of, effects on
 gastropod faunas 160–1, 162
Beringia 368
 human colonization of the Americas via
 389
 and insect refugia 300
Betula 268, 269, 275, 286
Betula nana 268
bicarbonates (HCO₃⁻), utilization by
 photosynthesis 36
biogeography
 amphibians, reptiles and birds, a review
 316–32, 393
controls on, nanoplankton 38–42
Tertiary insect taxa cf. extant relatives,
 changes in distributions 298–9
vicariance 118
see also palaeobiogeography
biotic and environmental evolution, imposing limitations on CLAMP 260–1
relations between key features may change over time 260
biotic factors
extrinsic, response to 395
intrinsic, response to 396
evolutionary innovations 396
biotic response to abiotic variables
marine organisms 394–5
terrestrial organisms 392–3
bipedalism, research on thermoregulatory benefits of 381–2
birds
diatrymid, distribution of 328
erantherinithines, dominant in Cretaceous 319
last record of giant flightless carnivorous rails 330
modern ratite, restricted to southern continents 321
North America, invasion of advanced passeresines 330
Biscutum constans 41, 43
bison 373, 377
Bison priscus 371
bivalves
biotic radiation linked to climatic decay 135
coevolutionary process with predators 145
displacement of many taxa into deep seas 140
diversification 135–6
division into Subclasses 136, 137–8
group shell composition originally aragonitic 139
epifaunal expansion, Palaeozoic 137
extinctions at or near the K–T boundary 139
family level little affected by K–T mass extinction 140
infaunal expansion, Mesozoic–Cenozoic 137
rise in global diversity 396
α-diversity 145
β- and γ-diversity 145–6
rise in number of taxa 135, 136
spatial patterns: the latitudinal diversity gradient 140–5
may represent a present day cline in productivity 144
poor showing of epifaunal groups in polar faunas 143
present day Arctic and Antarctic faunas 142, 142
tropical high diversity of, associated with coral reefs 141–2
temporal pattern 136–40
general considerations 136–7
taxonomic trends through time 137–40
black bands, Cretaceous 122
black shales, organic-rich 9, 16, 18
body size, in mammalian studies 346
bolide impacts 2, 7–8, 24–6
K–T boundary event 25–6, 125, 325, 394
Tertiary 22
Bolivina midwayensis 123
Bolton Fell Moss, proxy-climate curve 285
Boreal–Atlantic transition 286
Box primigenius 370
Bracklesham Group 170
Brazos Core, foraminiferal test size variation across the K–T boundary 62, 63, 65
Britain
human occupation at Boxgrove 385
insect faunas during the Devensian 310–15
enigmatic periods after sudden climatic amelioration 310, 313
period of intense continentality inferred 313, 315
Quaternary
importance of precipitation patterns 392
present climate a thermal maximum 368
Quaternary mammals 369–78
biogeographical considerations 371–2
faunal assemblages 369–71
global influences on distribution 367–9
last interglacial mammals 372–3
Late Cold Stage mammals 373–7
Bronze Age 284, 287
bryozoan–hermit crab association 200
bryozoans 396
cheilostomes 187, 196
deceleration in radiation coincides with change to icehouse conditions 202
family origins 197, 198
lunuliform 201
radiation in Late Alban–Cenomanian 196, 201–2, 205
community species richness, long-term changes in 198–9, 200
Cretaceous–Recent pattern of evolution 196–202
INDEX

bryozoans (cont.)
 ecological patterns 199–201
 interpretation 201–2
 taxic diversity patterns 196–9
catenostomes, lack mineralized skeleton 196
cyclostomes 197
diversity decline 199
radiation Jurassic into Cretaceous 196
diversity, global and local, rise in, possible bias? 201
factors controlling local distributions 195
fossil record disappointing 196
have responded to global change 202
and the K–T transition 197
Lunulitidae and Cupuladriidae 201
Mediterranean, evolution of 202–4
interpretation 203–4
Neogene and Quaternary species ranges 202–3
rate of species additions 203–4, 203 Recent 202
species diversity, origins and extinctions 204
modern fauna 195
additions through time 197, 199
possible role of environmental change in evolutionary radiations 205
tube-building symbioses 200
Buccella insitutata 123
Bug Creek interval 337, 337–9
Bulimina 26, 122
Bulimina jacksonensis caveata 123
Buscot Lock, dense Alnus woodland 278
Byelorussia, insect response to climatic change 299–300

CA see Correspondence Analysis (CA)
calcification 36–8
pelagic, dominated by coccolithophores 37
Camp Century, Greenland 285
rise in 18O values 273, 278
Campanile 157, 160
Campanile symbolum 160
Canadian Arctic Archipelago, Neogene floras 241
Canary Current circulation 87
Canis lupus (wolf) 371, 373
Canonical Correspondence Analysis (CCA) 252–3, 256, 258
$\delta^{13}C$
 Late Maastrichtian 57
 positive excursions 17
 connected with OAEs 16
carbon cycle, Cretaceous, relationship to climate 16–17
carbon dioxide
 atmospheric changes during glacials 32
 concentration of increased by calcification 36, 37
 Cretaceous 4, 17–18, 44
effect of increased weathering on 37–8
 emitted by volcanic activity 23
carbonate accumulation rates 36
carbonate platforms
 and echinoid diversity 182, 184
 Late Cretaceous 156, 157
 platform drowning events 5, 11, 182, 192–3
carbonates
 metamorphic recycling of 37
 pelagic, liable to subduction 37
Carcharocles 111
Carcharodon 111
Carnivora 334, 355
 seals, sea lions and walruses 335
Carpinus 279
Carychium minimum 269
Castanopsis 228
Catopsalis 339
Catostomus discobolus 118
Catostomus platyrhynchus 118
Catostomus spp., phylogeny and tectonic history accord 118
CCA see Canonical Correspondence Analysis (CCA)
Cenomanian–Turonian boundary
 decline of ephedroid and Classopolis pollen 221, 294
 rates of upwelling 11
Central American Seaway, closure of 84, 162
cephalopods, Cretaceous 97–106, 394
 an overview 97–8
 ecology 98–9
 major controls on distributions 101–6
 palaeobiogeography 99–101
Ceratocystis ulmi 283
Ceratopteris 236
cereal pollen 280–1, 284
cereal production 283–4
Ceriops, occurs with Nypa in London Clay flora 237
Cervus elaphus 370
Cetacea 355, 372
chalk facies
derep water 9
global persistence of 10–11
Gulf Coast and Western Interior, USA 9
chemical weathering 17, 31, 84
Chesapeake bay, evidence for meteorite impact 26
Chiasmolithus 43
Chicxulub Impact Structure 7–8
and the K–T boundary event 25, 325
Chilognemelina waiapuensis, patterns of test size change 65
Chiroptera 339
chirostoderes 319, 323, 328
final extinction 330
Cibicides lobatus 123
Cibicides wuellerstorfi 27
Cixius 290
Cladion mariscus 269
CLAMP see Climate Leaf Multivariate Program (CLAMP)
Classopolis pollen 218, 219
clastic material, decrease through time in chalk successions 10
clay mineral suites 15
Clethrinomys glareolus 370
CLIMAP project 2, 91
climate change
affecting human evolution 389–90
anthropogenically induced 244–5
Cenozoic
acting on plant communities 242
controls on 30–3, 223
long-term 28
climatic deterioration 241–2
and the Cretaceous and Cenozoic record of insects 288–302
and Cretaceous climates 12–17
controls on 17–19
demonstrated by Boreal and Tethyan faunal migrations 13–14, 99, 101
a critical factor for mammals 333
and decline in Ulmus 282–3
and evolutionary change in planktonic foraminifera 81
forcing mechanism for biotic change 391
and leaf physiognomy 244–64
long-term, important in community evolution 349
Mid Miocene, Europe and West Asia 363
and nannofossils, Cretaceous Indian
Ocean (case study) 44–50
nannoplankton
as agents of 36–8
as recorders of 38–42
Neogene, response of Old World terrestrial vertebrate biotas to 350–66
Paleocene–Oligocene climate deterioration 328–9
Paleogene, climatic fluctuations 336
Pliocene cooling and Pleistocene glaciations 331
Quaternary 28–30
and British insect faunas 310–15
high-frequency, global correlation and synchronous nature of 30
and the insect record 299–302
orbitally driven 367
recorded quickly by Coleoptera 296, 305
and salinity of inland waters 301
through bolide impact 24
understanding pattern and process of 244–5
and uplift of the Tibetan Plateau 30–1, 351, 364, 365
Climate Leaf Multivariate Program (CLAMP) 249–58
Canonical Correspondence Analysis (CCA) 252–3, 256, 258
Correspondence Analysis (CA) 252–3, 255
current data sets biased 261
current methodology 254
growth in number of reference sites 261
Asian/Alaskan fossil sites analysis results cf. climate model results 263–4
leaf margin categories and their scoring 252
limitations of 258–64
comparability of results 261–4
imposed by biotic and environmental evolution 260–1
imposed by methodology 258–9
imposed by taphonomy 259–60
phytogeographic factors 261
specialized environments 261–3
sub-alpine nest example 261, 262, 263
climates system, global, large-scale shift in 95
Cenozoic 28–30
long-term climate change 28
Quaternary climate change 28–30
Cretaceous 391
climates (cont.)
 affecting amphibian, reptile and bird
 biogeography 323–4
 control on Cephalopod distribution
 101–2, 105
 Cretaceous, and climatic change 12–17, 44
 arid and humid zones 15–16
 Boreal vs. Tethyan faunas 13–14
 carbon cycle and its relation to climate
 16–17
 oxygen isotopes from marine carbonates
 and fossils 14–15
 polar ice? 12–13
 Supertethys and hot tropical oceans 16
 global, controlled by Milankovitch-driven
 ice volume variations 95
 Miocene 330–1
 north-west Europe, warming following ice-
 sheet retreat 375, 377
 past, perceptions and assumptions 351
 climatic forcing, high-latitude 87
 ‘climatic optimum’ 277
 climatic stability, and DMS production 38
 Cnemedaria 236
 coal 12, 15
 coccoliths
 blooms produce high-reflectance waters 38
 Cretaceous 10–11
 dominate pelagic calcifications 37
 in global climate-change research 35
 primary production 36
 see also nanoplankton
 Coccolithus pelagicus 39, 43
 wide biogeographical range 38
 cockroaches, as general environmental
 indicators 293
 Coelodonta antiquitatis (woolly rhinoceros)
 371, 373, 375
 Colchidites 105
 coleoids 97, 98
 Coleoptera
 Late Cenozoic, palaeoclimatological
 significance of 303–15
 British insect faunas during the last
 glaciation 310–15
 geological longevity of species of 306–10
 nature of the Quaternary insect record
 304–5
 as palaeoenvironmental indicators 305–6
 Late Cretaceous 295, 295, 296, 301–2
 collecting and taphonomic bias, Europe 351, 362
 competitive exclusion 345
 of neogastropods 156
 condensed sequences, Cretaceous 8, 11
 conifers 216
 Cretaceous diversity 213
 during the Cenozoic 230
 Conioptis 323
 continental collision 20
 Afro–Arabia and Eurasia 161–2
 India–Asia 22
 see also plate tectonics
 continental flood basalts (CFBs)
 Cretaceous 5, 6–7
 Tertiary 23
 Comps 156
 corals 164
 and algal symbiosis 164, 165, 397
 az-corals 174–5
 diversity and extinction patterns 175–7
 and Ecological Evolutionary Ecological
 Units (EEUs) 168
 extinctions
 K–T boundary 176, 179
 no easy explanations 175–6
 vicariance, isolation and endemcity
 176–7, 179
 origins of modern faunas 168
 palaeocology reef-based 168
 reefs or corals? 168–9
 scleractinian
 and algal symbiosis 169–75
 boom and bust cycles 167, 176, 180
 environmental distribution 169
 environmental range 175
 extinctions 167
 Gosau-type fauna 167
 microstructural groups 166, 167
 outline history 165–8
 taxonomic richness 165–7
 z-corals 169–70, 180
 ability to grow in high-nutrient
 conditions 175, 178–9
 and climatic fluctuation 175
 and Lazarus corals 174, 175, 177–8, 397
 see also algal symbiosis; reef communities
 cordyline lizards 327
 Correspondence Analysis (CA) 252–3, 255
 corridors 322–3
 Africa–Europe 320, 322
 Beringia/Bering corridor 322, 328, 345, 368, 389
 invasions of North America via 322
Early Paleogene 326
Eurasian continuity and the Grande Coupure 328
Europe–Africa–Asia 327
North America–Greenland–Europe 328
North America–South America 326
South America–Africa 326–7
Gibraltar corridor 327
Levant, north–south population dispersals 386–7
Neogene, North America–South America link 329–30
see also land bridges; Panama Isthmus
Corylus 286
early Flandrian, rapid migration and expansion 275, 277
Corylus woodland 275
Cothill Fen
biotic response to Loch Lomond Stadial 273, 274
changes in woodland 275
expansion of pioneer arboreal vegetation 275
pre-clearance climax woodland 274, 278
crabs, causing damage to gastropod shells 150, 151, 152
Cricroceratites 100, 104
crocodiles
Laurasian and Gondwanan assemblages 319
modern 319
North America 330
passed through the K–T boundary 325
Crocuta crocuta 371
Crucibiscutum salburomus 42
Cryptbranchus 322
Cupuladria canariensis, range contraction 201
Cuspidaria 144
Cyathoseres 174, 178
Cyclaster platonatus 187
Cyclaster vilanovae 187
Cyclacanthus floridanus 43
Cyclurus kehri 117
Cylindricalithus rubus 46
excursions into higher latitudes 47
Daisy Banks Fen
alder pollen 278–9, 280–1
Centarea cyanus 286
high frequency of cereal pollen 280–1, 284
rise in water table 285
woodland clearance 284, 286
Dama dama 370
Dansgaard–Oeschger (D–O) cooling cycles 29
de Geer route 115
Deccan traps, India 7
extruded around the K–T boundary 23, 325
deep sea sediment cores, importance of 81
deer 375, 377
deglaciation, Mid Pliocene, Antarctica 28
Dendrophyllia 175
dental enamel, mammalian 340–1
Dentoglobigerina altispira 88, 89
desertification 368
diapause (hibernation) 294–5, 295–6
Dichotomites 105
Dicrostonyx torquatus 370
dimethyl sulphide (DMS), and global albedo 38
Dimlington Stadial 268
dinosaurs 319, 320, 322
Cretaceous global distributions 323–4
demise of 25
demise in East Asia 319
North America, evolution and extinctions 324
Diploria 174, 178
Discocaster 43
discoasters 43
Discosphaera tubifer 41
diversity pumps, Cenozoic, effect of 147
DMS see dimethyl sulphide (DMS)
dropstones 13
Drupa ricus 151
DSDP sites 612 and 94, foraminiferal test size
decrease and a dated microtekite horizon 72
Dutch elm disease 283
E–O see Eocene–Oligocene
East Africa, correlation of lake water levels
with Late Quaternary climatic fluctuations 29
echinoids
at the K–T boundary 190–4
extended extinction 190
loss of habitat? 192–4
selectivity of extinction 191–2
size of extinction event 190
survivorship pattern 191–2, 193
changes in diversity 181–4, 185
British Cretaceous fauna 182, 183
INDEX

- echinoids (cont.)
 - drop in diversity at end-Cretaceous and end-Tertiary 190
- fog
 - drop in species richness since the
 - Miocene 182–3
 - shallow-water carbonate platforms 182, 184
- changes in habitat occupancy 189–90
 - recent deep-sea holasteroids 189–90
- changes in life-history strategies 187–9
 - lecithotrophy or brooded development 187–9
- planktotrophy 187, 189
- changes in taxonomic composition 185–6
 - significant changes 185–6
 - regular, apparent decline in 186
 - sampling bias and preservation bias 181–2
- ecological crisis, low latitude faunas, Late Pliocene 91–2
- ecological disruption
 - North America, after the K–T event 239–40
 - mammalian radiation 240
 - ecological diversity 346
 - ecological diversity analysis, west European Paleogene 347, 348
- Ecological Evolutionary Ecological Units (EEUs) 168, 180
- ecological factors, affecting fish evolution 120
- ecological pressures, Late Pliocene ocean, magnitude of 88
- ecological trends, climate-related 346–7, 348
 - Edentata 334
- El Kef, Tunisia, ecosystem collapse at the K–T boundary 125
- Ellesmere Island, Early Eocene herpetofauna 328
- Elphidium excavatum 123
- Enigmata lutea 39, 41
 - first appearances of 38–9
 - endemism
 - dinosaurs in east Asia 319
 - and dispersal, archosaurs 320
 - fossil fish, North America–east Asia 115, 116, 117
 - Mesozoic nanoplankton 42, 44
 - Indian Ocean 44–50
 - England, southern
 - Early Cretaceous facies changes 15
 - habitat changes inferred from ecological diversity 347
 - Hampshire Basin, Late Eocene–Early Oligocene mammals 343
 - Purbeck–Wealden insects 293–4
 - absence of Xylidae 293–4
 - Isoptera and Blattodea 293
 - sphacids 294
 - Upper Thames Basin 266–7
 - Flandrian environmental history 273–86
 - Late Glacial environmental history 267–73
 - Enneidae 113
 - environment, physiognomic adaptations to
 - 247
 - environmental change
 - Cenozoic, gradual and sudden 125–6
 - complexities of 392
 - and foraminiferal populations
 - hypothesis approach 53–4
 - narrative approach 53
 - foraminiferal response to 129–30, 129–33
 - palaeocommunities 130–3
 - species diversity 129–30
 - Late Quaternary, biotic response to 265–87
 - arctic floral assemblage phases 286
 - birch woodland phase 286
 - Cretaceous–Recent record 266
 - Flandrian environmental history 273–86
 - Late Glacial environmental history 267–73
 - Upper Thames Basin study area 266–7
 - organism reaction to 392
 - possible role of in bryozoan evolutionary radiations 205
 - environmental perturbations 122, 123, 126, 179
 - Eocene thermal maximum
 - maximum poleward extent of vegetation
 - belts 234, 236–9
 - mangroves 236–7
 - polar deciduous forests 238–9
 - tropical aspect forest 237–8
 - Eocene–Oligocene boundary
 - ecological parameters show strong fluctuations near 347, 348
 - major mammalian faunal turnover 342–4, 345
 - Grande Coupure 342–3
 - Eocene–Oligocene event 58
 - Eocene–Oligocene transition, effects due to cooling 240–1

© Cambridge University Press www.cambridge.org
ephidroids 219
pollen from 216, 219
epicontinental seas, Cretaceous 11
Equisetum 268
Equus ferox (wild horse) 371, 373, 375
Erinaceus europaeus 370
Ethiopia
Aramis, oldest putative hominine 381
Omo Kibish, early Homo sapiens 386
Eudicots 225
Dilleniidae 228–9
fossil record 227–8
Hamamelidaceae 227
Magnoliaceae 227
Rosidae 228–9
Eurasia, dispersal of early humans to 383–5
Europe
arrival of Homo heidelbergensis 384
arrival of Homo sapiens 388
coeexistence with Neanderthals 388
colonization
by Homo species 379
human, long or short chronology debate 384
human, Mid Pleistocene 385
Cretaceous aridity, evidence for 15
gaining from faunal turnovers 346
Grande Coupure 328, 336, 342–3
loss of squamates 329
mammalian faunas
Early Miocene 358, 360
Mid Miocene 362–3
Neanderthals 385–6
becoming extinct 388
north-west 339
Britain a peninsula of 368
depopulation and recolonization 388
shallow-water anoxic facies 8
rising Cretaceous sea levels 8
southern
Dmanisi, Georgia, early human occupation 384
Gran Dolina, Spain, hominine remains 384–5
Neanderthal sites 385
see also North America, and Europe
Europe, Africa and Asia, during the Paleogene 327
eutrophy 39
evaporites 15, 360

evolutionary change, investigated through planktonic foraminifera 81
evolutionary dispersal/vicariance, nanoplankton 38–9
evolutionary innovation 396
exine, and pollen analysis 265
Fagus 279
clearcutting
park tundra flora 272–3
waterlogged sediments 285
Fascicularis 43
faunal assemblages, British Quaternary mammals 369–71
Anglian cold stage 369–71
Devensian 370–1
temperate periods 370
faunal change
based on Tertiary ecological changes 352–3
use of first and last appearances 351
faunal realms, Mesozoic 99
faunal turnovers 393
diachronism of dispersal 345
distinguishing true extinction from pseudextinction 336
major, Paleogene 336–46
Eocene–Oligocene boundary 342–4
K–T boundary 337–9, 344–5
Paleocene–Eocene boundary 339–42
Northern Hemisphere, resulting from glaciation 87–92
Favia 174, 178
feedback, and Milankovitch eccentricity and precession cycles 18
fern prairies 230, 231
ferns 231, 240
modern families restricted in the Cenozoic 230, 235–6
see also pteridophytes
fertility fluctuations 43
Filipendula 268
fire
at the K–T boundary 25
a plausible explanation for spread of Alnus 279
fish evolution, impact of global change on 112–20
Africa–South American rift 113–115
ecological factors 120
Eocene freshwater fishes of North America and Europe 115–18
intracontinental tectonism 118–20
fish faunas
Eocene, freshwater, response to environmental change 115–18, 393
modern, minor groups 107
Flandrian environmental history, southern England 273–87
ey early Flandrian 273, 275–7
lag in vegetational responses 275
landscape adjustment to temperature rise 273, 275
vegetational development 275
late Flandrian 282–6
alluviation, possible causes of 284–5
Bronze age, conditions during 284
climatic deterioration 285
distribution of lime trees 284
elm decline 282–3
land clearance for agriculture and cereal
production 270–1, 280–1, 283–4
Little Optimum 285–6
Medieval Period pollen evidence 286
mid Flandrian 277–9, 280–1
expansion of Alnus 278–9
human factor 279
regional woodland types 279
Florisant Lake beds 309
Florisphaera profunda 40, 41
indicator of surface-water oligotrophy 42
floristic provinces 215
flowering plants, Cenozoic 225–9
Chloranthaceae, Lazarus effect 227
and climate change 223
diversity 225, 226
Eudicots and Monocots 225, 227–9
radiation and modernization 225, 226
significance of, intrinsic factors 230–1
vegetation diversity 231
flowers 224
foraminifera
benthic
Cenozoic shelf, eastern N America 126–33
dwarfing a response to environmental stress 76
extinction event during the LPTM 58, 340
genus richness, Cretaceous to Recent 52
patterns of morphotypic variation 61, 62
showing episodes of
palaeoceanographical change 26–7
species diversity related to temperature and water depth 129
variation during P–E thermal maximum event 69, 77
and the E–O event 58
ecology is proximal target of selection 73
heterochronous analyses 55–6
heterochronous response
across the K–T boundary 62–7
across the P–E boundary 67–9
Late Eocene 69, 72–3
iterative evolution 53, 75–6
and the K–T event 57
morphotype analyses 55, 56
no consistent pattern of morphotype preference 77
and the P–E thermal maximum event 57–8
patterns of diversification and large-scale global change events 51
planktonic
affected by palaeoceanographic changes 95
decline in 79
distribution within the North Atlantic
faunal provinces 81, 82
extinctions during the Late Pliocene 87–92, 88
genus richness, Cretaceous to Recent 52
last occurrences 89
and the P–E thermal maximum event 58, 61
as palaeoclimatic and
palaeoceanographic indicators 81
patterns of morphotypic variations 58–61
proliferation during Maastrichtian
cooling event 57
species richness 59, 60
transgressive patterns of expansion 94
population response to major environmental change 76
potential role of test shape vs.
developmental or life-history
characters 74–5
species longevity 76
specific effects of environmental change,
approaches to 53–5
foraminiferal assemblages
planktonic, eastern subtropical Atlantic
84–7
climatic deterioration during Late Pliocene 85
ODP 659, analysis of the assemblage 84–7
ODP 659, development of a more extreme cold-water fauna 85, 86, 87
ODP 659, relative abundance records 85 foraminiferal palaeocommunities, benthic shallow water 130–3
overview of Cretaceous–Recent history 122–6
forcing mechanisms
for biotic change 391
external and internal 33–4
tectonic, and Northern Hemisphere climate 84
forests
Antarctic Peninsula, Cretaceous 13
coniferous, Neogene 241
polar deciduous 238–9
swamp 241
tropical aspect 237–8
tropical, Eocene 355
see also woodland
fossil assemblages, Quaternary extended ranges of extant animals 371
extinct species, palaeoclimatic significance may be misinterpreted 371–2
fossil record
bryozoans, disappointing 196
Eudicots 227–9
fish, nature of 107–12, 397
diversification 107, 108, 109, 110
gastropods, nature and limitations of 149–50
limitations of 396–7
Monocots 229
terrestrial vertebrates 316
see also insect record; plant fossil record; pollen records
France
mid Valanginian event 104
south-east, giraudi Zone 104
Fraxinus 278, 279
free-sporing plants see pteridophytes
frogs, ranid 327
fruits 224, 231–2
provide evidence of dispersal 224
γ-diversity, in bivalves 146
gastropods 394
carnivorous, evolution of 152, 155
Cretaceous history 154–8
diversity and species richness 155–7
invasion of non-marine habitats 154–5
latitudinal control on distribution 157–8
‘Tethyan fauna’ 157
evolutionary innovation 396
exceptionally large forms 157
fossil record 149
nature and limitation of 149–50
K–T boundary extinctions 158–60, 163
Acteonellidae 158–9
appear to be random 160
Nerineoidea 159
vetigastropods and neritopsines 159
Volutidae 160
major faunal changes in the Tertiary 160–2
effects of climate change and plate tectonics 161–2
trans-Arctic interchange of marine animals 160
non-marine evolutionary radiation of 154
Stylomatophora, a problematic group 154–5
predators and feeding: the Mesozoic marine revolution 150–4
development of carnivory 152
exploitation of sulphide-oxidizing bacteria 154
resistance to predation 150, 151
predatory rise in diversity 155, 162
shell drilling by 155–6
shell morphology
little use for taxonomy 150
for resistance to predation 150, 151
tropical, specialized diets 154
see also neogastropods
Geisaltil (Germany), fish faunas 115
geographical events, Early Paleogene 326–8
Gephyrocapsa mullerae 39
Gephyrocapsa oceanica 39
Gibraltor corridor 327
Gibraltar, Straits of 162, 329
Gigantocapulus 150
Ginkgo 213, 230
range contraction 235
glacial cooling, extent of impact 87
glacial–interglacial alternations 95, 303
effect on insect faunas 299–302, 309
Killarney Oscillation 300–1
rapid 80
glacial-interglacial alternations (cont.)
temperature variations smaller in low-latitude oceans 91–2

glaciation
British Isles
Flandrian, environmental effects 273–87
Late Glacial, environmental effects 267–73
Late Glacial, mammals 370
Northern Hemisphere 79, 120, 331
faunal response to onset of 84–95
faunal turnover, tempo and mode of
extinctions 87–92
linkage between extreme events and
extinctions 89, 91
rapid expansion, high-latitude forcing
then identifiable 87
recolonization of the North Atlantic 92–5
onset of in the North Atlantic 28
see also polar ice
glacio-eustasy 33–4

glendonites, Cretaceous 13, 48
global change 1–2
and algal symbiosis 177–8
biotic response to 391–8
driving force behind regional
environmental change 2
the norm 3
global cooling 58, 297
and byozoans 202, 204
end Eocene 160
late Cretaceous 18, 19
Paleogene–Neogene, and fish extinctions
120
and restricted insect ranges 299
global warming 3
future 1–2
and limestone formation 36–7
Globigerina bulloides 89
increase in 85
tolerant of colder conditions 85, 86
Globigerina decoraperta 86, 89
complex distribution pattern 88
decline of 95
Globigerina oozo 79
Globigerinoides extremus 86, 89
complex distribution pattern 88
decline of 89, 95
Globigerinoides ruber 89
in interglacial periods 95
Globorotalia exilis 88, 89

Globorotalia hirsuta, expansion of
biogeographical range 94–5
Globorotalia inflata 89, 94
Globorotalia limbach 88, 89
Globorotalia menardii, changes in depth
habitat 92
Globorotalia miocenica 86, 88, 89
extinction of 87–8
Globorotalia punctatula 88, 89, 94
dominated cold-water assemblages 85, 86
extinction of 87–8, 91
Globorotalia truncatulinoides 89
expansion of biogeographical range 94–5
first occurrence, species origination? 92–3
Globorotalia tumida, changes in depth habitat
92
gnatean–angiosperm parallel diversification
220, 221–2
gnateans 217, 219, 221
Gondwana
breakup of 6
caused major changes 20
and development of cephalopod Austral
Realm 101
general pattern 320
distinctive amphibian fauna 317–18
early separation of New Zealand 321
separation of Madagascar–Seychelles–
India block 320–1
South America–Antarctica–Australia
block, breakup of 322
Goniopora 174, 178
Goniopora websteri 170, 179
Grande Coupure 328, 336, 342–3
possibly related to terminal Eocene
climatic event 344
Green River Shales, fossil fish faunas 115
sister-taxa, east Asia/Indonesia 115–17
greenhouse gases
emitted during volcanic activity 23
and global warming 3
see also carbon dioxide
greenhouse world 1
Cretaceous 4, 17, 19
superplume episode 7
Paleocene–Eocene 34
GRIP ice core, shows abruptness of climate
cchange 29–30
ground squirrels 375
growth rings 247
indicate seasonality 238
lack of 225, 237

Grypus eques 307

Guembelia cretacea, survived the K–T extinctions 65

Gulo gulo 370

gymnosperms 214, 229

Gypsincopetra 337

habitats

fragmentation of 325

loss of and echinoid extinctions 192–3

open and closed, coexistence of 346

specialization of and community
specialization 146

halogens, emitted by volcanic activity 23

heat energy, distribution of 32

Heinrich events/layers 28–9, 386

each event followed by global warming 29

Helianthemum 269

Helicolithus anceps 46

excursions into higher latitudes 49

Heptagenia fuscogrisea 298

Heteroceras 100, 105

found in E. England accompanied by
Aconeeras 106

heterochrony 34

heterochronic response across the K–T boundary 62–7

earlier achievement of sexual maturity
66–7

heterochronic modes 65–6, 66

heterochronic response across the P–E boundary 67–9

coordinated response of test shape 69,
70, 71

earlier achievement of sexual maturity
67, 69

heterochronic response in the Late Eocene
69, 72–3

heterococochs 136, 137

accounting for Mesozoic–Cenozoic success
of 138–9

ligament system 138–9

aragonitic shell structure 139

bi–polar occurrence 144

latitudinal gradient very steep 142, 148

thin shell layers not suited to polar climates
144

Heterohelix globulosa

Nye Kløv populations 65

progenetic nature of heterochronic signal
68

survived the K–T extinctions 65

Heterohelix navarroensis

progenetic nature of heterochronic signal
68

survived the K–T extinctions 65

Hiattella arctica 144

Hibolites 99

Himalaya–East Alpine orogen 6

Himalayas mountain chain, uplift of and
Indian Monsoon 364

Hipparion 241

‘**Hipparion datum**’ 351

Hippopotamus amphibius 370

Hominidae, evolutionary divergence of
humans and apes 380–1

hominines

dentally highly derived 382

origin of 379, 380–2

savannah hypothesis 381

hominoids

dispersal out of Africa 356

in East African faunal assemblages 357–8

Homo

early species dispersed from Africa 379

origins of 382–3

Homo erectus 379, 382

Indonesian/Chinese fossils, dating of 383–4

Homo ergaster 382

Homo habilis 382

assumed evolutionary link with **Homo
 erectus** challenged 383

Homo habilis sensu stricto 382

Homo heidelbergensis 379, 385

Homo helmei 386

Homo neanderthalensis 375, 388

see also Neanderthals

Homo rudolfensis 382

Homo sapiens 375

dispersed from Africa 379, 393

first fossil appearance 386

reconstructed pattern of dispersal 387

Hooley 234

hoplits 100

hotspot chains 21

human evolution 379–90

dispersal of early humans to Eurasia 383–5

evolution of the Neanderthals 385–6

origin and dispersal of modern humans
386–9

origin of hominines 380–2

origins of genera **Homo** and **Paranthropus**
382–3
human evolution (cont.)
turnover pulse hypothesis 382–3
study of effects of climate change 389–90
human intervention 277, 279
disruption caused by 3, 395
‘moving out of trouble’ almost impossible
for insects now 310, 315
see also agriculture; Bronze Age
Hydnophora 174, 178
Hydromedus *gigas* 335–6

Icacinaceae, range contraction 232–3
ice age, Cenozoic, onset of, Late Pliocene
cooling 81, 83–4
ice volume
buildup in Britain, isotope stage two 375
glacial–interglacial fluctuations 95, 368
benthic δ¹⁸O data for proxy 85
extent of entrainment and southward
advection 87
long-term fluctuations at Milankovitch
frequencies, a global climatic control
83, 394
ice-rafting 272, 382
Cenozoic 28, 81, 83, 85
iceberg path, North Atlantic sea floor
sediments 29
possible deposits, Cretaceous Indian Ocean
47–8
seasonal in the Cretaceous? 12–13, 48
ice-sheets
Northern Hemisphere 83, 272, 273
wasting of 273, 275
polar, Antarctica 26, 58
Quaternary 28–30
and Milankovitch cyclicity 28
and short-term climatic shifts 28–9
see also glaciation; polar ice
icehouse world 1, 391
Oligocene–Recent 34
Quaternary 20, 28
igneous activity
Cenozoic 23–4
Cretaceous 6–7
ikaiti, indicates cold sea floor temperature
13
impact structures
Cenozoic 24, 24, 25, 26, 325
Cretaceous 7–8
India, endemically modified Cretaceous
Gondwanan fauna 321–2
Indian Ocean

Cretaceous, nanofossils and climate
change 44–50
dendrochronology 44–50
expansion of the Austral water mass 47
nannofossil climate-change indicators 46
‘palaeobiogeographical fronts’ 44, 45
palaeobiogeographical zones 44, 45, 47, 49–50
palaeotemperature changes influencing
fossil excursions 47, 49

Indonesia
Homo erectus
arrival of 383–4
population may have persisted until
modern humans arrived 387–8
insect record
Early Cretaceous 289–94
appearance of social insects 290
general pattern 289–93
Purbeck–Wealden insects of southern
England 293–4
Late Cretaceous 294–6
continuing rise in extant families 294
K–T extinction, little effect on insects at
family level 294–6, 302
Quaternary 299–302
nature of 304–5
Tertiary 296–9
few extinctions 296–7
generic extinction end-Paleocene 297
insects (Hexapoda) 393
affected by sea-level rise, Late Cretaceous
294
Chironomidae 304
as indicators of environmental change
300–2
Coleoptera 295, 295
effects of heavy metal and
organophosphate pollutants 301–2
geological longevity of some species
306–10
migration a quick response to
environmental change 296, 305
Mutual Climatic Range reconstructions
311–15
respond to effects of eutrophication 301
scavengers provide indication of past
climatic conditions 311
diapause (hibernation) 294–5, 295–6
Diptera 295, 296, 304
Ephemoptera 304
Hemiptera 304
extinctions 290, 291, 294
highest family extinctions and origination, Early Cretaceous 289–90
Lepidoptera 304
continued evolution 297, 297
Megaloptera 304
modern, restricted distributions 299
Neuroptera, extinctions 290, 292
Odonata 304
extinctions 290, 292
Orthoptera 304
extinctions 290, 291
peak in Oligocene 297, 298
preservation in sediments and amber 288
Quaternary
evolution or extinction 309
high degree of evolutionary stability 308–9
thermally sensitive, tracked acceptable climates 309, 315
variety of habitats and diverse morphologies 303–4
richness of fossil record 288
Trichoptera 304
iridium, at the K–T boundary Chixculub impact structure 25
Gubbio 7
Iron Age 285, 287
isotopic shifts caused by deterioration of the global climate 27
response to oceanic carbon crisis 27
Juglandaceae
modernization and diversification 227, 228, 228
range contraction 232, 233–4, 233
Juniperus 269, 275
K–T boundary
bryozoans 202
abrupt increase in relative skeletal mass after 199
collapse of productivity at 194
cooling prior to 57
echinoid extinctions 190, 191–2
extinction event
disappearance of non-avian dinosaurs and some avians 325
little effect on insects at family level 294–6, 302
no detectable effect on amphibian fauna 325
western North America, survivors rapidly speciating and diversifying 345
gastropod extinctions 158–60, 163
heterochronic response across 62–7
mammals
dietary and locomotor diversification after dinosaur extinction 335
extinction only seen in Montana 337–9, 344
and plant communities 239–40
supposed collapse of algal symbiosis 174, 180
Kampferia magnifica 41, 46
kaolinite 15
Kap København assemblage indicates importance of environmental opportunity 308
makes good ecological sense 308
no present day geographical analogue 307–8
shows geological longevity of insects 306–8
Kara impact structure, Russia 7
Karakaschiceras 104
Kenya
Alia Bay and Kanapo, Australopithecus anamensis 381
Nariokotome, Homo ergaster/erectus 383, 385
Lagenia substriata 123
lagerstätten effects 121
teleosts 109
Lagomorpha 334
lake sediments, reveal effect of Quaternary climatic and environmental change on insects 302
land bridges 333
Afro–Arabia and south-west Asia, crucial for establishing the time of mammal exchange 356
AfroArabia and south-west Asia 351
influencing vegetation interchange 234, 242
Northern Hemisphere, at Paleocene–Eocene boundary 341, 345
Panama Isthmus see Panama Isthmus
Thule Bridge and de Geer route 115 see also corridors
Land Mammal Ages (LMA) 336, 339
Laramide–Sevier orogenic uplift 9
larval development, non-feeding see lecithotrophy or brooded development
Late Glacial
definition and delimitation unclear, British Isles 267–8
Late Glacial Interstadial 268–72
climatic amelioration 268–9
Late Glacial period (Dimlington stadial) 268
Loch Lomond Stadial 272–3
Late Paleocene Thermal Maximum (LPTM) 57, 58
Late Pliocene
climatic deterioration 85
extinctions during 87–92, 88
Laurasia
Creteceous extinction of rhychocephalians 318
distinctive amphibian fauna 317–18
rise of modern crocodile 319
Laurentide ice-sheet, shows short-term climatic shifts 28–9
Lava Camp Mine, Alaska, insect fauna 309
Lazarus corals 174, 175, 177–8, 397
leaf margin analysis 247
applied to Cretaceous leaves in North America 247, 248, 249
leaf morphology, flowering plants 224–5
leaf physiognomy and climate change 244–64
limitations of CLAMP 258–64
plant physiognomy as a climatic indicator 246–58
lecithotrophy or brooded development 187–9
Lemmus lemmus 370
lepidosaurians
choristoderes 319, 323
phylogenetic hypotheses plotted against time 316–17, 317
rhychocephalians 318–19
Leptoria 174, 178
Lepus timidus 370
Levant
early Homo sapiens 386
overlap between sister clades 386
limestone formation, and global warming 36–7
Lipotyphla 334
Litodactylus leucogaster 307
Little Optimum 285–6
Littleton 160, 161
sister-groups 161
Littorina littorea 160, 161
Littorina obtusata 161, 161
Littorina saxatilis 160, 161
Littorina squalida 160
LMA see Land Mammal Ages (LMA)
Loch Lomond Stadial 3, 30, 272–3
biotic response 272–3
cooling triggered by influx of meltwater 272
hypotheses proposed for 272
London Clay floras
palms argue for frost-free climate 238
similar to present south-east Asian floras 237
LPTM see Late Paleocene Thermal Maximum (LPTM)
lucinoids 136, 137, 144
restriction to oxygen-deficient environments 139
Luristan, Iran, gastropods 158–9
Lynnia 144
Macoma 144
macroevolutionary lag 148, 396
Madagascar–Seychelles–India block 320–1
isolation of Madagascar from India 321
timing of break up controversial, slow and fast hypotheses 321–2
magnetostratigraphical analysis, dating errors 350–1
Mammal Neogene (MN) zones 352
relationship to chronometric, chronostratigraphical and planktonic zonation 354–5
show similarities and differences between European and African faunas 362–3
zonation criteria reconsidered 352
mammalian faunas
African 395
extinctions and forced evolutionary changes 382–3
and the closure of Tethys 356–7
Cretaceous, terrestrial record 333–4
evry Mesozoic, community structure 353
Early Miocene 357–60
Africa 258, 357–8, 359
community structure, East Africa 358, 358, 359
Europe 358, 360
early Paleocene
African, changed by dispersals 356
archaic look 355
Eocene, dominated by small mammals 355
Late Miocene, AfroArabia 364–5
Mid Miocene
Africa 361–2
community structure, East Africa 358, 359, 361
dietary guilds 362–3
Europe 362–3
Mid to Late Miocene 360–5
West Asia 363
Neogene, Arabian 364–5
Oligocene 356
Quaternary
Last Cold Stage 373, 375–7
last interglacial 372–3, 374
response to environmental change 378
mammals
climate-related ecological trends 346–7, 348
Cretaceous faunas 333–4
differ from modern faunas 334–5
Eocene 334
early, main radiation of 355
major factors affecting distribution 369
mammal faunas and Land Mammal Ages (LMA) 336
Paleocene, first records 334
Paleogene 333–49
climate-related ecological trends 346–7, 348
major faunal turnovers 336–46
return to the sea 335–6
terrestrial record 333–5
physiological adaptations allowing range extension 372
Quaternary, in Britain 369–77
Last Cold Stage 373, 375–7
Last Interglacial 372–3, 374
seasonal migrations 372
Mammuthus primigenius (woolly mammoth) 370, 373
mangroves 236–7
vegetation to landward of 237–8
see also Nypa
Manson Impact Structure 7
Marginulina cf. Marginulina colligata 123
Mari Hills, Pakistan 158
marine carbonate cycle 36, 37
marine carbonates and fossils, oxygen isotopes 14–15
marine connections see seaways
marine mammals 335–6, 372
Early Eocene 355
marine productivity, drop in at K–T boundary 325
marine provinces 146
thermally controlled 147
marine revolution, Mesozoic 150–4
marsupials 333, 334
appearance of in South America 339
Lancian fauna 337
spread of 334
mass extinctions 1, 11
at the E–O boundary, planktonic foraminifera 59, 61
benthic fauna 123, 125
Cenomanian–Turonian 221
impact generated 8
and the K–T boundary 25–6
marine, anoxic events as a cause 16–17
nannofossil, Triassic/Jurassic boundary 42
Northern Hemisphere, Late Pliocene, pervasive 95
tempo and mode of, Northern Hemisphere glaciation 87–92
see also K–T boundary
MAT see Mean Annual Temperature (MAT)
Mawsonia 113
Mean Annual Range of Temperature (MART) 246–7
Mean Annual Temperature (MAT) 247, 248, 253, 255, 257, 258
assumptions when using leaf margin analysis 248–9
Cenomanian 247
three-dimensional representation of leaf size 256, 259
Mediterranean basin
during the Oligocene, Early and Mid Eocene 357
and the ‘Messinian salinity crisis’ 360
Mediterranean Sea
formation of 357
Neogene 329
Meles meles 370
menardiform taxa, Late Pliocene
lack thick calcite crust 86, 89, 92
replenishment of 93
Mesolithic–Neolithic transition, marked by elm decline 283
Mesopotamian–Arabian Gulf, marine sedimentation interrupted during the Aquitanian 356
INDEX

Mesozoic marine revolution (MMR) 150–4
development of gastropod carnivory 152
predation pressure and change in
gastropod shell morphology 150–1
Messel, fish faunas 115
Messinian Salinity Crisis 22, 351
aridity associated with 351, 360
associated with eustatic sea level changes
21
and continental collision 26, 162
effects on bryozoan evolution 195, 204
mammalian dispersal and climate change
360
restriction on Mediterranean faunal
diversity 120
Metasequoia 230, 235, 239
methane (CH₄), changes in the atmosphere
during glacials 32
Metoicoceras geslinianum Zone 8
shows southward migration of Boreal
fauna 14
micro-diamonds 25
Microstaurus chiastius 46
Aptian southward excursion 47
indicates Berriasian–Valangian
palaeobiogeographical stability 47
Microtus gregalis 370, 375
Microtus oeconomus (northern vole) 370, 373
Mid Pleistocene Revolution 33
Mid-Continental Seaway 115, 299, 320, 322,
323, 324
migrations, not controlled solely by sea level
changes 105–6
Milankovitch cycles/cyclicity 4, 20, 33, 83, 85,
391
change in 382
and Quaternary climate change 33, 367, 368
short term control on Cretaceous climate
change 18–19
and the Vostok ice core 32–3
Mingies Ditch 275
dominant Alnus woodland 278
park tundra flora 272–3
waterlogged sediments 285
mitochondrial DNA (mtDNA) 389
MMR see Mesozoic marine revolution
(MMR)
MN see Mammal Neogene (MN) zones
Monocots 225
Alismatidae 229
Commelinidae 229
fossil record 229
Poaceae 229
monocotyledons 209
monotrems 333, 334
Montana, USA
comparison of Paleogene faunal turnovers
344–5
non-marine sedimentary sequence,
vertebrate-bearing, spanning the K–T
boundary 337–9
Montanaea 174–5, 178
Monterey Event 22, 27
multituberculates 337, 339
Mutual Climatic Range Method 311, 312,
313–15
Mya 144
Myriophyllum 268
Myrela 144
mytiloids 136, 137
Namib Desert 369
Nannococcus abundans 41, 42
nannoliths 35
nannoplankton
as agents of global climate change 36–8
calcification 36–8
primary production 36
dimethyl sulphide and global albedo 38
environment 39–40, 43
r-selected, temperature sequence 39–40
as recorders of global climate change,
controls on biogeography 38–42
depth structure 40, 42
environment 39–40, 43
evolutionary dispersal/vicariance 38–9
nannoplankton assemblages 43
deep-photic assemblage 40, 42
Naticoidea 152
nautiloids 97
Neanderthals
evolution of 385–6
physique contrasts with Nariokotome
skeleton 385
Nearest Living Relative (NLR) Approach 245
inappropriate for pre-Quaternary studies
245
neogastropods
diversification in 155–6, 162
low Cretaceous diversity in the Tropics,
hypotheses 156–7
Neogene Dispersal Phases, for hominoids out
of Africa 356
INDEX

Neogloboquadrina atlantica 88, 94
extinction of 91
Neogloboquadrina pachyderma 89, 94
dominant during glacial periods 87
migration route 94
records dominated by obliquity orbital
rhythm 85, 86
a subpolar species, first peak in 85
Neohoplites 104
Neoponides lunata, patterns of test size
change 65
neoselachians
age of differentiation 109–10, 111
Cenomanian diversification of rajiforms
112
fossil sharks, assignment to modern groups
a problem 111
modest diversification of 107
Nerita 159
Neuquén Basin, Argentina 104
niche partitioning, low latitude oceans 92
Ninella torquata 155
NLR see Nearest Living Relative (NLR)
Approach
non-angiosperms, diversity and abundance
through the Cretaceous, mid-
palaeolatitudes 213–15
conifer diversity 213
decline in cycadophytes and pteridophytes
213
epheidroid pollen 216, 219
low within-flora diversity 213, 214, 215
salamanders, aridity left disjunct species
330
North America
Cretaceous
Late, major transgressive–regressive
cycles 324
marsupials dominant 334
Eocene faunal changes in the interior
328–9
and Europe, Eocene freshwater fishes
115–18
leaf margin analysis of Cretaceous leaves
247, 248, 249, 258, 258
mid-continent aridity, Late Oligocene–
Early Miocene 330
modification of vegetation post K–T event
239–40
no barriers to north–south range
alterations 331
Quaternary insect assemblages 300
modern species richness lower in East
300
salamanders
diversification by vicariance 324
effects of Oligocene cooling 329
southward retreat of primitive passerines
331
see also Lava Camp Mine, Alaska;
Montana, USA
North America, eastern
benthic foraminifera, Cenozoic 126–33
US Middle Atlantic continental margin,
Cenozoic shelf deposits on 126–9
depositional history 126–9
foraminiferal response to environmental
change 129–33
North America–Greenland–Europe
continuity 328
North America–South America
Miocene faunal interchange 329
Panamanian Isthmus, Pliocene and Great
American Interchange 329–40
North Atlantic
change in temperature of surface water
circulation 315
loss of albatrosses, end Pliocene 331
movement of oceanic polar front 268, 273
post-glaciation recolonization by
planktonic foraminifera 92–5
faunal diversification 95–6
immigrant taxa from the Indo-Pacific
oceans 93–4, 96
vegetation/mammal interchange 234–5
North Atlantic Deep Water (NADW)
formation of 32
suppression of 29, 30, 272
North Atlantic Drift 375, 377
North Atlantic Igneous Province 23
North Atlantic Seaway, aided migration of
ammonites 101, 106
North Sea area, southern, Nypa-dominated
mangrove reconstructed 236–7
northern continents, Pliocene cooling and
Pleistocene glaciations 331
Northern Hemisphere
Boreal and Tethyan realms 99
Cenozoic plants, controls on distribution
and persistence 234–5
glaciation see glaciation, Northern
Hemisphere
insect distribution response to climatic
change 299–300
Northern Hemisphere (cont.)
onset of ice 83
transformation of high-latitude climate, theories for 84
Northmoor
much non-arboreal pollen 269
peat lenses 269
Notelops 114
Notophagus
decline in microthermal rainforests 242
formerly widespread 235
NOW database 353
Nucella lapillus 161
sister species 161
Nucella lapillus incrassata 161
nutrient distribution, and nannoplankton
distribution 39, 43
Nuttalides trunmpyi 26
patterns of test shape variations 70, 71
significant drop in test size across the P–E
boundary 69, 70
Nye Klev section, foraminiferal test size
variation across the K–T boundary
64, 65

Nypa 229
range contraction 232, 233

OAES see oceanic anoxic events (OAES)
Obik Sea, drying out of 328
ocean waters, thermal expansion and
contraction of 34
ocean–atmosphere interactions, Cenozoic
31–3

oceanic anoxic events (OAES)
and allopatic speciation 120
Cenomanian, and benthic foraminifera
122, 124
coincide with platform drowning events
11
Cretaceous 122, 124
related to formation of Ontong–Java
Plateau 7, 18
Valangian–Campanian 16–17

ocean circulation
affected by closure of major seaways 26
Cenozoic, deep 32
Cretaceous 9–10, 17, 19
depth, and oceanic hiatuses 10
general circulation modelling of 10
global climate and ocean-current
circulation interactions 32
Southern Ocean circum-polar gyre 26, 31

oceanic crust production 5
Cretaceous
and angiosperm diversification 220–1
and decreased CO2 18
from mid-ocean ridges 23
see also sea floor spreading
oceanic hiatuses 14
and deep water circulation 10
oceanic polar front
early Flandrian movement 273
Late Glacial 268
oceans, calcium depletion at K–T boundary
25
ODP Site 738C core, foraminiferal test size
variation across the K–T boundary
64, 65

Olbiogaster 290
Olocostephanus 100, 103–4
Oman, ‘Gosau-type’ fauna, Maastrichtian 167
Ontong–Java Plateau, formation of 7, 18
ophiolites, obducted 6
orogenies 33, 118
Cenozoic, and climate change 30–1
Cretaceous 5, 6, 19
affecting the carbon cycle 17
and transformation of Northern
Hemisphere high latitude climate 84
outgassing 4, 23

Ovibos moschatus 370
18O/16O ratio 14
18O concentrations, polar ice cores 273
δ18O curves, Barremian–Maastrichtian 14
δ18O excursions, onset of Northern
Hemisphere ice 83
oxygen minimum zone 125

P–E see Palaeocene–Early Eocene
Pachygyra 174
Pactopus 299
paedomorphosis 66, 67, 76
palaeobiogeography
Cenozoic global plant distributions
232–6
flowering plants 232–5
non-flowering plants 235–6
Cretaceous cephalopods 99–101
Boreal, Tethyan and Austral realms 99,
100, 101, 102
episodic migrations 101
fossil fish
distributions have historical and
ecological explanations 113
role of systematics in choosing between historical explanations 113–20
nannofossil, Mesozoic and Cenozoic 42–3 bipolar distributions 42
differentiation during the Mesozoic 42, 43
distribution in the Cretaceous Indian Ocean 45, 46
latitudinal variations in Palaeogene Atlantic 43
link to nutrients for Cretaceous coccoliths 43
Triassic nannofossils 42
nannofossil zones, Late Cretaceous 44, 45
planktonic foraminifera, controlled by water mass patterns 91
Southern Ocean Cretaceous taxa, distribution controlled by water palaeotemperature 44
palaeoceanography
Cenozoic 26–7
Cretaceous 8–11, 13
control on Cephalopod distribution 102–6
eustasy and the great transgressions 8–9
global persistence of chalk facies 10–11
oceanic circulation 9–10
oceanic hiatuses and deep water circulation 10
palaeoclimates
changes in shown by changing insect assemblages 305
Cretaceous Indian Ocean, nannofossil climate-proxy curves 47, 48
drawback to research 50
palaeoclimatic records, Northern Hemisphere, faunal and δ18O, comparison of 84–7
palaeocommunities, and environmental change 130–3
palaeoenvironmental history
Cenozoic 34
Cretaceous 19
palaeoenvironmental indicators, Coleoptera as 305–6
palaeogeography
Cenozoic 20–1, 22
Cretaceous 6
control on Cephalopod distribution 101
Early Cretaceous 318
Late Cretaceous 323
Palaeolithic tools, Late Glacial 273
Palaeoloxodon antiquus 370
Palaeomymyrus dauisburgi 298
Palaeoplacycarya 234
palaeotemperatures, Cretaceous, James Ross Island 12
Paleocene–Early Eocene transition 57–8
widespread diversification, terrestrial and marine biotas 58
Paleogene–Eocene boundary
heterochonic response across 67–9
major mammalian faunal turnover 339–42
due to climate change and low sea level 345
sudden appearance of new mammal faunas 341
no major change detected in South American faunas 341
Paleogene–Eocene transition, decline in diversity 242
Palaeosox fritzschei 117
palms, in tropical aspect forest 237
palygorskite 15
paleontology 265
Pan-Gorilla clade 380
Pan-Homo last common ancestor 381
Panama Isthmus
an effective barrier to species dispersal 94, 96
closure of 6, 17, 26
connection made 322–3
emergence of 84, 162, 394
and Great American Interchange 329–40
a land bridge 21
Pangaea, effects of breakup 44
Panthera leo 371
Parahoplites nutfieldiensis Zone 8
Paranthropus 379, 382
origins of 382–3
parasites 290
Paratethys 357
Parelophus 114
peat
peat bogs, Late Flandrian 282
shows environmental change, Late Glacial and Flandrian 266–7
periglacial activity, Late Glacial 268
Peripluma 144
Perissodactyla 339
permafrost 272
permafrost areas, preservation of fossil assemblages 306–10
phosphate-rich horizons, on platforms 11
I N D E X

photosynthesis 361
land plant 246
phylogenies
fossil fish 107, 121
teleost 112
Pileolus 157, 1159
Pinus 286
Pinus pollen 268
Pinus woodland 275
placentals 333, 334
spread of 334

plant communities, Cenozoic 236–43
C4 plants 241
patterns of community change 239–42
Eocene thermal maximum 240
Eocene–Oligocene transition 240–1
K–T transition 239–40
Miocene and Pliocene 241–2
patterns of species diversity and floral
turnover 242
reconstruction of and distribution in
response to Eocene thermal maximum
236–9
mangroves 236–7
polar deciduous forest 238–9
tropical aspect forest 237–8
plant dispersal 224, 232
plant fossil record
Cenozoic plant record 225–32
plant groups 225–30
significance of flowering plants: intrinsic
factors 230–2
nature and application of 223–5
plant growth environment, interpreted
through woods and flowering plant
leaves 224
plant physiognomy, as a climate indicator
246–58
plants in hyperspace 249–58
plant productivity, Cretaceous 16
plant record, Cenozoic 225–32
plant groups 225–30
flowering plants 225–9
Juglandaceae, modernization and
diversification 227, 228, 228
non-flowering plants 229–30
significance of flowering plants, intrinsic
factors 230–2
fruits and seed 231–2
species diversity and floral biology
230–1, 239
vegetation diversity 231

vegetative biology and physiognomy,
leaves and woods 232
Plantago 265, 268
plants
C3 and C4 photosynthetic pathways 361
free-sporing 215, 216, 216
modern, distributions related to climate
246–7
selection during evolution 246
Platanus 228
plate tectonics
Afro–Arabian plate, effects of movement
of 161–2, 365
Cenozoic 20–1, 22
control on climate change 30–1
and changing biogeographical distribution
patterns of amphibian, reptiles and
birds 331–2
Cretaceous 6
control on Cephalopod distribution
101
long-term control on climate change 17
and insect faunas 298–9
producing unstable conditions 365
see also named plates
Plateumaris nitida, geological longevity of
309
platform drowning events 5
affecting echinoids 182, 192–3
associated with extinctions 11
Platycarya, range contraction 232, 233
Platycarya strobilacea, single modern
specimen 234
Plerogyra 178
polar ice
Antarctic, build-up at the Terminal Eocene
Event 342
Cretaceous? 12–13
first major Cenozoic build-up 336
Quaternary, mammalian faunal response
to 367–8
pollen 224, 265
angiosperm 209, 215, 217–218
Aquilapollenites-type 219
architecture of 224
cereal-type 280–1, 284
Upper Thames basin 279
Classopollis 218, 219
Compostio pollenites rhizophorus 233
the Cretaceous–Recent record 266
Platycarpapollenites 234
polyptic (ephedroid) 216, 217, 219
increase in diversity and abundance 220
protected by exine 265
Spinizonocolpites 232, 236
triaperturate 209, 215
pollen analysis 265
reconstruction of Quaternary environments 393
pollen records
Abingdon 268
Buscot Lock 278
Cothil Fen 273, 274, 275, 278
Daisy Banks Fen 278–9, 279, 280–1, 286
decline in *Ulmus* pollen 282
rise in herbaceous pollen 284
Northmoor 269
Rissington 268, 269
Sidlings Copse 275, 276–7, 278, 279, 285
decline in *Ulmus* pollen 282
rise in herbaceous pollen 284
Sparton Fen 268, 269, 270–1, 273, 275, 277, 278, 279
decline in *Ulmus* pollen 282
rise in herbaceous pollen 284
Vale of the White Horse 269–70
pollen and spore assemblages, pre-Quaternary 266
pollination 230–1
faithful, specialist and diverse 231
Populus 268
Port Meadow, waterlogged sediments 285
Primates 339
Eocene families 355
Princeton flora, British Columbia 239
Prinsius bisulcatus 43
Prinsius martini 43
Probiscidea 334
progenesis
in angiosperms 220
in foraminifera 66, 68, 69, 77–8
protobranches 136, 137
in present day Arctic and Antarctic faunas 142
provincialism, Mesozoic nanoplankton 42
Pteranodon 324
pteridophytes 213, 229
relative abundances 215, 216
pteriomorphs 136, 137
thin shell layers not suited to polar climates 144
Pterocaryopsis 234
Pterosaurs, Cretaceous diversity decline 319
Palleniata 93
coiling direction patterns 94
Palleniata prinalis, a deep dweller 94
Purbeck Limestone Group, insects of 293–4
Quercus 228, 278, 286
Quercus woodland 275
radiations
bryozoan 196, 201–2, 205
planktonic foraminifera
Late Cretaceous and Paleogene 58–9
Paleocene–Eocene, simpler morphotypic structure 59
see also adaptive radiation
Rangifer tarandus (reindeer) 370, 373
Red Sea 162
reef communities
collapse and recovery models 164–5, 178
Cretaceous, confusion concerning 168–9, 179
hiatuses 180
seen as recovery intervals 178
and Lazarus corals 178
modern, emergence of 180
period of absence 177
preservation *in situ* 168
problem of reef and framework definition 169
treatment as changing sequence of single kind of community 168–9
Repagulum parvidentatum 42, 46
movement into intermediate latitudes 47
reptiles
non-archosaurian groups, Barremian 318–19
in subtropical–tropical conditions 328
Reticulo fenestra 43
Rhacolepis 114
rift 118
Africa–South America 6
and biogeographic distribution of fossil fish 113–15
Antarctica–Australia 6, 21, 22, 31
and development of the Indian Ocean 6
doming prior to, Kenya 357
linking western Tethys with the Arctic 106
Red Sea and Gulf of Aden 357
South America–Antarctica 31
INDEX

Rissington
 park tundra flora 272–3
tundra vegetation pollen 268
Rithina 293
Rodentia 334, 355
Rumex 268

Sahara desert 369
Saiga tatarica, brief incursion in Britain 377
salamanders 324, 329, 330, 331
Salisbury and Albermarle embayments (SAE), Cenozoic shelf deposits 126–9
 assembly of new communities 131
 Calvert Formation 128
 Cenozoic diversity trends 129–30, 129
 Chowan River Formation 128–9, 130
 high diversity community 133
 Coastal Plain units, deposition related to
 high stands 124, 126–7, 127
 Eastover Formation 130
 foraminifera indicate cool conditions
 128
 low diversity community 129, 133
 Nanjemoy Formation 130
 depositional environment 127–8
 foraminiferal occurrences 130–1, 133
 Norfolk Arch 127
 Pinney Point Formation 128, 130
 Pungo River Formation 130
 rich in phosphorite 128
 species diversity trend and increasing
 taxonomic diversity 134
 stratigraphical ranges of benthic foraminifera
 130–3
 Yorktown Formation 130
 ice-mediated transgressions 128
 Salix 268, 269, 286
 Sanguisorba 269
 Santana Formation
 doubts about palaeoenvironment 114
 fish faunas
 no special relationship with West Africa
 115
 similar to those of Kem Kem Beds
 (Morocco) 113
 similar to those of Tepexi, Mexico 114
 sauropod hiatus 324
 savanna grasslands 241
 Saynaceras 104
 Scolytus multistriatus 283
 Scolytus scolytus 283
 sea cows (Sirenia) 335
 range restricted through dependence on sea
 grasses 335–6
 sea floor spreading 4, 19
 Pacific, and mantle plume 6
 see also ocean crust production; plate
tectonics; rifting
 sea levels
 biota coping with dramatic changes in
 391–2
 Cenozoic, causes and rates of change
 33–4
 Cretaceous 4, 44, 294, 324
 changes in affecting cephalopod
 distribution 102–3
 changes in not sole control on
 migrations 105–6
 high/very high 8–9, 17, 19
 low 8, 9
 not under glacioeustatic control 13
 major falls in
 and development of freshwater and land
 snails 154–5, 162
 and faunal turnover at Paleocene–
 Eocene boundary 342
 Quaternary changes, important to
 terrestrial vertebrates 368
 rate of change influence preservational
 potential 182
 sea surface temperatures (SST), Nordic Sea
 273, 277
 seabirds, Pliocene–Pleistocene distributions
 related to changes in ocean currents
 331
 seagrass associations 200
 seagrass communities 139
 seals, sea lions and walruses 335
 seasonality 145
 seaways
 aiding migration 101, 106
 Atlantic–Mediterranean marine
 connections 21
 Cretaceous, severing of 19
 major
 closure of 26
 opening of 6, 17, 19
 open at Paleocene–Eocene boundary 342
 South Atlantic–Tethys 113
 see also Bering Strait; Gibraltar, Straits of;
 land bridges; Turgai Strait; other
 named seaways
 seeds 231–2
 provide evidence of dispersal 224
sepiolite 15
Seribiscutum primitivum 42, 46
movement into intermediate latitudes 47, 49
shelf deposits, Cenozoic 126–9
shelf seas, Mesozoic, spread of ammonites 101
Siderastrea 174, 175, 178
Sidlings Copse 279, 285
changes in woodland 275
expansion of pioneer arboreal vegetation 275, 276–7
pre-clearance climax woodland 276–7, 278
woodland clearance 284
Sirenia 335–6, 355
Siwalik Formation
Mid Miocene faunal trends 364
record of Asian Neogene life 357
social wasps 290
soil carbonates, recording Late Paleocene carbon excursion 340–1
South Africa, early *Homo sapiens* 386
South America 334
Late Eocene, probable arrival of mammals from Africa 342
South America–Africa connection, Paleogene, a biogeographical necessity 326–7
South America–Antarctica–Australia block, breakup of 322
South Atlantic Ocean 6
South Atlantic Seaway, aided ammonite migration 101
South China, intracontinental orogeny 6
Spartum Fen 270–1
changes in woodland 275
dominant *Alnus* woodland 278, 279
expansion of pioneer arboreal vegetation 275
hazel maxima 277
high frequency of cereal pollen 270–1, 284
pre-clearance climax woodland 270–1, 278
response to climate amelioration 269
rise in water table 285
tundra vegetation pollen 268
woodland clearance 284, 286–7
spatial analysis
of African Mid Miocene faunas 358, 359, 361–2
based on Harrison concept 353
species abundance records, environmental change impact and glacial–interglacial climatic oscillation 79–80
species diversity/richness 347, 348
and abundance
angiosperms, Cretaceous, mid-palaeolatitudes 211–13
non-angiosperms, Cretaceous, mid-palaeolatitudes 213–15
angiosperms, trends in 210
Britain
Last Cold Stage mammals 373, 375–7
Last Interglacial mammals 372–3, 374
Cenozoic, patterns of and floral diversity seem to reflect climate change 242
and environmental change 129–30
and floral biology 230–1
gastropods 155–7
and geography, mutual dependency 88
latitudinal diversity gradient, bivalves 140–5
planktonic foraminifera, declined 59
Sphagnun 268
Sphenolithus 43
spores 265
see also plants, free-sporing
stable carbon isotope technique, use of 366
Stegaster, extinction of 193–4
Steller’s Sea Cow 335–6
Stephanocenia 174, 178
Stephanorhinus hemitoechus 370
87Sr/86Sr ratio 15, 57
overall increase in during the Cenozoic 27
Stratiotes 229
Subbotina linaperata 69, 72–3
morphological response accompanied by habitat shift 72, 74
shape variations 72, 73
significant decrease in test size 69, 72, 72
subduction of the East Pacific Rise, effects of 21
and the rise of the Andes 6
sulphate aerosols, formation of 38
sulphur, emitted by volcanic activity 23
superplume, mid-Cretaceous 6, 7, 9, 17
Supertethys hypothesis 16
Sus scrofa 370
Talpa europaea 370
taphonomy, imposing limitations on CLAMP 259–60
INDEX

Taxodium, range contraction 235
tectonic forcing mechanisms, and Northern Hemisphere climate 84
tectonic stress 33
tectonism, intracontinental and fossil freshwater fish faunas 118–20
taxic mixing tied to geological events 118, 119, 120
 Tekites 26
teleoclasts 111–12
diversity peaks 108, 109
impressive diversification 107
record shows different pattern 111
temperature, and nanoplankton distribution 39, 43
Terminal Eocene Event, post-dates the E-O boundary 342
termites 290
indicate warm conditions 293
Tethys
belemnites vanished by end-Cenomanian 100
closure of 20, 357
and mammalian faunas 356–7
exceptionally large gastropods, Late Cretaceous 157
Late Cretaceous water temperatures on carbonate platforms 156
Miocene
closure of 351
effects of division of 161–2
new Austral belemnite fauna, Dimetobleidae 100
see also Mediterranean Sea
Textularia 123
Theodoxus 159
thermal gradients 335
Thracia 144
Thaumaturus intermedius 117
Thaumaturus spannuthi 117
Thule Bridge 115
Thylechius 187
Tibetan Plateau
and Himalayan chain, influencing Late Miocene regional climates 365
influencing Cenozoic climate change 30–1
uplift during the Neogene, effects of 360
uplift possibly shifting the Indian Monsoon pattern 351, 364
Tilia 278, 286
dominant tree in base rich areas 278
Toba, Mount, eruption of 23–4
and climatic deterioration 393
Tonna zonatum 153
Tranolithus orionatus 46
movement into intermediate latitudes 47
transfer function concept, pollen and foraminiferal data 245
transgressions
Aptian 8
basal Chalk 10
Cenomanian and Turonian 8–9
trophic guilds 353
Tropics
large-scale refugium or an area of generation 147
preferred site of origin for many marine clades 147–8
tundra conditions, inference of based only on palynological data unsafe 310
Turgai Strait 234, 318
turnover pulse hypothesis, and human evolution 382–3
turtles 318
Typha 268
Uaine, Lochan (Cairngorms), change in chironomid faunas due to cooling 301
Ulmus 265, 278, 286
Late Flandrian decline in 282–3, 286
possible causes 283
Ulmus woodland 275
uplift
effects of 31
see also Tibetan Plateau
Upper Thames Basin 266–7
biotic response to environmental change, framework for 286, 287
Flandrian environmental history 273–87
Late Glacial environmental history 267–73
pollen sites 267
upwelling and productivity events, Cretaceous 11
upwelling zones 331, 335
associated with deserts 369
Cretaceous 43
Ursus arctos (brown bear) 371, 373
USA, low Campanian sea levels 9
Valanginides 104
Valdotermes bremanac 293
Vasum turbinellus 151
vegetation
crises in and climate change 265
Cretaceous
 low-latitude 16
 terrestrial high-latitude 12
petrifying, Miocene 241
sluggish response to Late Glacial climate change 268
vertebrates, terrestrial
fossil record 316
Old World, response of biotas to Neogene climate change 350–66
continental biozonations 352
interpreting faunal change 352–3
Mesozoic and Paleogene background 353–6
the Neogene 356–65
quality of data, dating and faunas 350–2
vetigastropods 159
development of defensive mechanisms 150–1
vicariance biogeography 118
Vinctifer 114
Virgilina gunteri curtata 123
volcanic eruptions
 and climatic deterioration 393
 short-term effects on climate and biota 23–4
volcanism 57
 Pacific sea floor 7
 increased rate of CO2 release 17
Volutoderma 160
Volutomorpha 160
Vostok ice core, CH4 record periodicity consistent with Milankovitch cyclicity 32–3
Vulpes lagopus 370
Vulpes vulpes 370
warm deep saline water (WSBW) 4, 9–10, 19
Watznaueria barnesae 46
Watznaueria britannica 46
southward excursion 47
Wealden sequence, pollens in 219
Wealden Supergroup, insects of 293–4
whales (Cetacea) 335
 polar dispersal of and diversification into modern types 335
 seasonal migrations 372
White Horse, Vale of, shows extensive physical weathering 269, 272
Wigwamna arctica, wide biogeographical range 38
Windermere Interstadial 268–72
within-flora abundances, free-sporing plants (mainly pteridophytes) 215, 216
within-flora diversity
 angiosperms 211, 212, 214
 geographical patterns 216, 217
 decline of free-sporing plants 216
 non-angiosperms 213, 214, 215
wood 232
 fossil, indicates plant need for structural support 225
 lack of growth rings 225, 237
Rissington 273
woodland
Sidlings Copse 275, 276–7, 278, 284
Sparthum Fen 270–1, 275, 278, 279, 284, 286–7
thermophilous, Upper Thames Basin 278
woodland clearances, Upper Thames region 284, 286–7
Younger Dryas 3, 30, 272–3, 386
Younger Dryas–Holocene transition, speed of 273, 275
Zeugrhaditus erectus 43