NON-PERTURBATIVE FIELD THEORY
From Two-Dimensional Conformal Field Theory to QCD in Four Dimensions

Providing a new perspective on quantum field theory, this book gives a pedagogical and up-to-date exposition of non-perturbative methods in relativistic quantum field theory and introduces the reader to modern research work in theoretical physics.

It describes in detail non-perturbative methods in quantum field theory, and explores two-dimensional and four-dimensional gauge dynamics using those methods. The book concludes with a summary emphasizing the interplay between two- and four-dimensional gauge theories.

Aimed at graduate students and researchers, this book covers topics from two-dimensional conformal symmetry, affine Lie algebras, solitons, integrable models, bosonization and ’t Hooft model, to four-dimensional conformal invariance, integrability, large N expansion, Skyrme model, monopoles and instantons. Applications, first to simple field theories and gauge dynamics in two dimensions, and then to gauge theories in four dimensions and quantum chromodynamics (QCD) in particular, are thoroughly described.

YITZHAK FRISHMAN is a Professor Emeritus at the Weizmann Institute, Israel, where he has served as Head of the Einstein Centre for Theoretical Physics and Head of the Department of Particle Physics.

JACOB SONNENSCHEIN is a Professor of Physics at Tel Aviv University, Israel, where he was Head of the Particle Physics Department from 2003 to 2007.
CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

General Editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

S. J. Aarseth Gravitational N-Body Simulations: Tools and Algorithms
J. Ambjørn, B. Durhuus and T. Jonsson Quantum Geometry: A Statistical Field Theory Approach
A. M. Anile Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics
J. A. de Azcárraga and J. M. Izquierdo Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics†
O. Babelon, D. Bernard and M. Talon Introduction to Classical Integrable Systems†
V. Belinski and E. Verdaguer Gravitational Solitons
J. Bernstein Kinetic Theory in the Expanding Universe
G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems
N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space†
K. Bolejko, A. Krasiński, C. Hellaby and M-N. Célérier Structures in the Universe by Exact Methods: Formation, Evolution, Interactions
D. M. Brink Semi-Classic Methods for Nucleus-Nucleus Scattering†
M. Burgess Classical Covariant Fields
E. A. Calzetta and B-L. B. Hu Nonequilibrium Quantum Field Theory
S. Carlip Quantum Gravity in 2+1 Dimensions†
P. Cartier and C. DeWitt-Morette Functional Integration: Action and Symmetries†
J. C. Collins Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion†
P. D. B. Collins An Introduction to Regge Theory and High Energy Physics†
M. Creutz Quarks, Gluons and Lattices†
P. D. D'Eath Supersymmetric Quantum Cosmology
E. A. de Felice and C. J. S Clarke Relativity on Curved Manifolds
B. DeWitt Supermanifolds, 2nd edition†
P. G. O Freund Introduction to Supersymmetry†
Y. Frishman and J. Sonnenschein Non-Perturbative Field Theory: From Two Dimensional Conformal Field Theory to QCD in Four Dimensions
J. A. Fuchs Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory†
J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists†
Y. Fujii and K. Maeda The Scalar-Tensor Theory of Gravitation
J. A. H. Futterman, F. A. Hander, R. A. Matzner Scattering from Black Holes†
A. S. Galperin, E. A. Ivanov, V. I. Orevetsky and E. S. Sokatchev Harmonic Superspace
G. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity†
T. Gannon Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics
M. Göckeler and T. Schücker Differential Geometry, Gauge Theories and Gravity†
C. Gómez, M. Ruiz-Altaba and G. Sierra Quantum Groups in Two-Dimensional Physics
M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 1: Introduction†
M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 2: Loop Amplitudes, Anomalies and Phenomenology†
V. N. Gribov The Theory of Complex Angular Momenta: Gribov Lectures on Theoretical Physics
J. B. Griffiths and J. Podolsky Exact Space-Times in Einstein’s General Relativity
S. W. Hawking and G. F. R. Ellis The Large Scale Structure of Space-Time†
F. Iachello and A. Arima The Interacting Boson Model
F. Iachello and P. van Isacker The Interacting Boson-Fermion Model
C. Itzykson and J. M. Drouffe Statistical Field Theory Volume 1: From Brownian Motion to Renormalization and Lattice Gauge Theory†
C. Itzykson and J. M. Drouffe Statistical Field Theory Volume 2: Strong Coupling, Monte Carlo Methods, Conformal Field Theory and Random Systems†
C. V. Johnson D-Branes†
P. S. Joshi Gravitational Collapse and Spacetime Singularities
J. I. Kapusta and C. Gale Finite-Temperature Field Theory: Principles and Applications, 2nd edition†
V. E. Korepin, N. M. Bogoliubov and A. G. Izergin Quantum Inverse Scattering Method and Correlation Functions†
M. Le Bellac Thermal Field Theory†
Y. Makeenko Methods of Contemporary Gauge Theory
N. Manton and P. Sutcliffe Topological Solitons†
N. H. March Liquid Metals: Concepts and Theory

© in this web service Cambridge University Press
www.cambridge.org
I. Montvay and G. Münster *Quantum Fields on a Lattice*
L. O'Raifeartaigh *Group Structure of Gauge Theories*
T. Ortín *Gravity and Strings*
A. M. Ozorio de Almeida *Hamiltonian Systems: Chaos and Quantization*
L. Parker and D. J. Toms *Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity*
R. Penrose and W. Rindler *Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields*
R. Penrose and W. Rindler *Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry*
S. Pokorski *Gauge Field Theories, 2nd edition*
J. Polchinski *String Theory Volume 1: An Introduction to the Bosonic String*
J. Polchinski *String Theory Volume 2: Superstring Theory and Beyond*
V. N. Popov *Functional Integrals and Collective Excitations*
R. J. Rivers *Path Integral Methods in Quantum Field Theory*
R. G. Roberts *The Structure of the Proton: Deep Inelastic Scattering*
C. Rovelli *Quantum Gravity*
W. C. Saslaw *Gravitational Physics of Stellar and Galactic Systems*
M. Shifman and A. Yung *Supersymmetric Solitons*
H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt *Exact Solutions of Einstein's Field Equations, 2nd edition*
J. Stewart *Advanced General Relativity*
T. Thiemann *Modern Canonical Quantum General Relativity*
D. J. Toms *The Schwinger Action Principle and Effective Action*
A. Vilenkin and E. P. S. Shellard *Cosmic Strings and Other Topological Defects*
R. S. Ward and R. O. Wells, Jr *Twistor Geometry and Field Theory*
J. R. Wilson and G. J. Mathews *Relativistic Numerical Hydrodynamics*

† Issued as a paperback.
Non-Perturbative Field Theory
From Two-Dimensional Conformal Field Theory to QCD in Four Dimensions

YITZHAK FRISHMAN
The Weizmann Institute of Science

JACOB SONNENSCHEIN
Tel Aviv University
To my wife Yehudith,
mother Faiga
and daughter Einat

Yitzhak Frishman

To my mother Hilda,
wife Nava
and children Nir, Ori and Tal

Jacob Sonnenschein
Contents

Preface xv
Acknowledgements xviii

PART I NON-PERTURBATIVE METHODS IN TWO-DIMENSIONAL FIELD THEORY

1 From massless free scalar field to conformal field theories 3
1.1 Complex geometry 3
1.2 Free massless scalar field 4
1.3 Symmetries of the classical action 5
1.4 Mode expansion 6
1.5 Noether currents and charges 7
1.6 Canonical quantization 7
1.7 Radial quantization 9
1.8 Operator product expansion 11
1.9 Path integral quantization 12
1.10 Affine current algebra 13
1.11 Virasoro algebra 14

2 Conformal field theory 17
2.1 Conformal symmetry in two dimensions 17
2.2 Primary fields 18
2.3 Conformal properties of the energy-momentum tensor 20
2.4 Virasoro algebra for CFT 21
2.5 Descendant operators 22
2.6 Hilbert space of states 23
2.7 Unitary CFT and Kac determinant 25
2.8 Characters 28
2.9 Correlators and the conformal Ward identity 29
2.10 Crossing symmetry, duality and bootstrap 31
2.11 Verlinde’s formula 33
2.12 Free Majorana fermions – an example of a CFT 34
2.13 The Ising model – the $m = 3$ unitary minimal model 37
Contents

3 **Theories invariant under affine current algebras** 39
3.1 Simple finite-dimensional Lie algebras 39
3.2 Affine current algebra 44
3.3 Current OPEs and the Sugawara construction 49
3.4 Primary fields 51
3.5 ALA characters 52
3.6 Correlators, null vectors and the Knizhnik–Zamolodchikov equation 53
3.7 Free fermion realization 55
3.8 Free Dirac fermions and the $\hat{U}(N)$ 58

4 **Wess–Zumino–Witten model and coset models** 61
4.1 From free massless scalar theory to the WZW model 61
4.2 Perturbative conformal invariance 65
4.3 ALA, Sugawara construction and the Virasoro algebra 66
4.4 Correlation functions of primary fields 67
4.5 WZW models with boundaries – D branes 71
4.6 G/H coset models 73
4.7 G/G coset models 75

5 **Solitons and two-dimensional integrable models** 79
5.1 Introduction 79
5.2 From the theory of a massive free scalar field to integrable models 79
5.3 Classical solitons 81
5.4 Breathers or “doublets” 86
5.5 Quantum solitons 88
5.6 Integrability and factorized S-matrix 92
5.7 Yang–Baxter equations 94
5.8 The general solution of the S-matrix 95
5.9 From conformal field theories to integrable models 99
5.10 Conserved charges and classical integrability 101
5.11 Multilocal conserved charges 104
5.12 Quantum integrable charges in the $O(N)$ model 107
5.13 Non-local charges and quantum groups 108
5.14 Integrable spin chain models and the algebraic Bethe ansatz 111
5.15 The continuum thermodynamic Bethe ansatz 125

6 **Bosonization** 131
6.1 Abelian bosonization 132
6.2 Duality between the Thirring model and the sine-Gordon model 136
6.3 Witten’s non-abelian bosonization 139
6.4 Chiral bosons 148
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bosonization of systems of operators of high conformal dimension</td>
<td>159</td>
</tr>
<tr>
<td>7</td>
<td>The large N limit of two-dimensional models</td>
<td>165</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>7.2</td>
<td>The Gross–Neveu model</td>
<td>166</td>
</tr>
<tr>
<td>7.3</td>
<td>The CP^{N-1} model</td>
<td>171</td>
</tr>
<tr>
<td>PART II TWO-DIMENSIONAL NON-PERTURBATIVE GAUGE DYNAMICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Gauge theories in two dimensions – basics</td>
<td>177</td>
</tr>
<tr>
<td>8.1</td>
<td>Pure Maxwell theory</td>
<td>177</td>
</tr>
<tr>
<td>8.2</td>
<td>QED_2 – Schwinger’s model</td>
<td>178</td>
</tr>
<tr>
<td>8.3</td>
<td>Yang–Mills theory</td>
<td>179</td>
</tr>
<tr>
<td>8.4</td>
<td>Quantum chromodynamics</td>
<td>180</td>
</tr>
<tr>
<td>9</td>
<td>Bosonized gauge theories</td>
<td>183</td>
</tr>
<tr>
<td>9.1</td>
<td>QED_2 – The massive Schwinger model</td>
<td>183</td>
</tr>
<tr>
<td>9.2</td>
<td>Abelian bosonization of flavored QCD_2</td>
<td>185</td>
</tr>
<tr>
<td>9.3</td>
<td>Non-abelian bosonization of QCD_2</td>
<td>187</td>
</tr>
<tr>
<td>10</td>
<td>The ’t Hooft solution of 2d QCD</td>
<td>191</td>
</tr>
<tr>
<td>10.1</td>
<td>Scattering of mesons</td>
<td>198</td>
</tr>
<tr>
<td>10.2</td>
<td>Higher $1/N$ corrections</td>
<td>201</td>
</tr>
<tr>
<td>11</td>
<td>Mesonic spectrum from current algebra</td>
<td>203</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>203</td>
</tr>
<tr>
<td>11.2</td>
<td>Universality of conformal field theories coupled to YM_2</td>
<td>203</td>
</tr>
<tr>
<td>11.3</td>
<td>Mesonic spectra of two-current states</td>
<td>206</td>
</tr>
<tr>
<td>11.4</td>
<td>The adjoint vacuum and its one-current state</td>
<td>216</td>
</tr>
<tr>
<td>12</td>
<td>DLCQ and the spectra of QCD with fundamental and adjoint fermions</td>
<td>223</td>
</tr>
<tr>
<td>12.1</td>
<td>Discretized light-cone quantization</td>
<td>223</td>
</tr>
<tr>
<td>12.2</td>
<td>Application of DLCQ to QCD_2 with fundamental fermions</td>
<td>224</td>
</tr>
<tr>
<td>12.3</td>
<td>The spectrum of QCD_2 with adjoint fermions</td>
<td>228</td>
</tr>
<tr>
<td>13</td>
<td>The baryonic spectrum of multiflavor QCD_2 in the strong coupling limit</td>
<td>237</td>
</tr>
<tr>
<td>13.1</td>
<td>The strong coupling limit</td>
<td>237</td>
</tr>
<tr>
<td>13.2</td>
<td>Classical soliton solutions</td>
<td>239</td>
</tr>
<tr>
<td>13.3</td>
<td>Semi-classical quantization and the baryons</td>
<td>240</td>
</tr>
<tr>
<td>13.4</td>
<td>The baryonic spectrum</td>
<td>247</td>
</tr>
<tr>
<td>13.5</td>
<td>Quark flavor content of the baryons</td>
<td>247</td>
</tr>
<tr>
<td>13.6</td>
<td>Multibaryons</td>
<td>249</td>
</tr>
</tbody>
</table>
Contents

13.7 States, wave functions and binding energies 250
13.8 Meson-baryon scattering 252

14 Confinement versus screening 265
14.1 The string tension of the massive Schwinger model 265
14.2 The Schwinger model in bosonic form 268
14.3 Beyond the small mass abelian string tension 268
14.4 Correction to the leading long distance abelian potential 269
14.5 Finite temperature 271
14.6 Two-dimensional QCD 272
14.7 Symmetric and antisymmetric representations 276

15 QCD_2, coset models and BRST quantization 279
15.1 Introduction 279
15.2 The action 279
15.3 Two-dimensional Yang–Mills theory 282
15.4 Schwinger model revisited 283
15.5 Back to the YM theory 285
15.6 An alternative formulation 287
15.7 The resolution of the puzzle 288
15.8 On bosonized QCD_2 289
15.9 Summary and discussion 290

16 Generalized Yang–Mills theory on a Riemann surface 291
16.1 Introduction 291
16.2 The partition function of the YM_2 theory 292
16.3 The partition function of gYM_2 theories 296
16.4 Loop averages in the generalized case 297
16.5 Stringy YM_2 theory 299
16.6 Toward the stringy generalized YM_2 301
16.7 Examples 302
16.8 Summary 304

PART III FROM TWO TO FOUR DIMENSIONS

17 Conformal invariance in four-dimensional field theories and in QCD 309
17.1 Conformal symmetry algebra in four dimensions 310
17.2 Conformal invariance of fields, Noether currents and conservation laws 312
17.3 Collinear and transverse conformal transformations of fields 314
17.4 Collinear primary fields and descendants 316
17.5 Conformal operator product expansion 318
Contents

17.6 Conformal Ward identities 319
17.7 Conformal invariance and QCD 322

18 Integrability in four-dimensional gauge dynamics 329
18.1 Integrability of large N four-dimensional $\mathcal{N} = 4$ SYM 330
18.2 High energy scattering and integrability 333

19 Large N methods in QCD 337
19.1 Large N QCD in four dimensions 337
19.2 Meson phenomenology 343
19.3 Baryons in the large N expansion 346
19.4 Scattering processes 352

20 From 2d bosonized baryons to 4d Skyrmions 355
20.1 Introduction 355
20.2 The Skyrme action 355
20.3 The baryon as a Skyrmion 361
20.4 The Skyrme model for $N_f = 3$ 367

21 From two-dimensional solitons to four-dimensional magnetic monopoles 371
21.1 Introduction 371
21.2 The Yang–Mills Higgs theory – basics 372
21.3 Topological solitons and magnetic monopoles 373
21.4 The ’t Hooft–Polyakov magnetic monopole solution 376
21.5 Charge quantization 377
21.6 Zero modes, time-dependent solutions and dyons 378
21.7 BPS monopoles and dyons 381
21.8 Montonen Olive duality 382
21.9 Nahm construction of multimonopole solutions 383
21.10 Moduli space of monopoles 386

22 Instantons of QCD 389
22.1 The basic properties of the instanton 389
22.2 The ADHM construction of instantons 394
22.3 On the moduli space of instantons 396
22.4 Instantons and tunneling between the vacua of the YM theory 400
22.5 Instantons, theta vacua and the $U_A(1)$ anomaly 403

23 Summary, conclusions and outlook 407
23.1 General 407
23.2 Conformal invariance 408
23.3 Integrability 410
23.4 Bosonization 411
23.5 Topological field configurations 412
23.6 Confinement versus screening 414
Contents

23.7 Hadronic phenomenology of two dimensions versus four dimensions 416

23.8 Outlook 420

References 423

Index 433
Preface

Field theory is the framework with which one describes the theory of the standard model of elementary particles and their interactions. The electromagnetic sector (QED) of the standard model is understood extremely well using perturbation theory, but the color interaction (QCD) which is responsible for hadron physics can only be accounted for perturbatively for a limited set of observational data. Due to the fact that at long distances the color interaction is strongly coupled, one cannot reliably apply perturbative methods to extract, for instance, the spectrum of the hadrons. The arsenal of tools to handle strongly coupled systems is obviously much more limited than the one used for weakly coupled ones. Nevertheless, several methods to handle non-perturbative field theories have been developed. The main goal of this book is to expose the reader to those techniques and to describe their applications in two-dimensional and four-dimensional field theories and finally in QCD in four dimensions.

The topic of non-perturbative field theory is by itself very rich and it is clear that one cannot cover it in a non superficial manner in one book. Thus we had to make certain decisions about the flow of the book and about the topics that should be addressed. As for the former issue we have decided to present the book in three parts. In the first part we describe, in detail, the most important non-perturbative techniques of two-dimensional field theory. The reason for this is obvious since physical systems with one space dimension and one time dimension are the simplest and hence it is easier to grasp the non-perturbative tools when applied to these systems. In the second part of the book we study two-dimensional gauge theories with the emphasis on employing the techniques developed in the first part. The third part is devoted to the non-perturbative aspects of gauge dynamics in four dimensions. In this part we elevate the techniques of the first part to four dimensions and we examine to what extent gauge theories in four dimensions behave like their two-dimensional simplified analogs.

There are several books on the shelves discussing non-perturbative methods in general such as [66] and [182], there are books describing one particular method, like conformal field theory in two dimensions for instance [77], there are books that describe two-dimensional QCD, [2] and books that study various aspects of four-dimensional QCD, for example [151] and of course there are books on the basics of field theory, for example [37], [130], [173] and [215]. The aim of this book is three-fold, to review a package of non-perturbative methods, to present a picture which is close to the state-of-the-art in the topics described and to
demonstrate application of the methods in addressing several questions of gauge dynamics.

The particular methods we explore in Part 1 of the book associate with conformal field theory, with affine Lie algebras, with topological properties of fields, solitons and integrable models, with bosonization and with the large N approximation.

In Part 2 we first present the basics of gauge field theories in two dimensions and in particular the bosonized version of them, we then describe the seminal large N solution of 't Hooft of the mesonic spectrum of two-dimensional QCD; we address the mesonic spectrum using current algebra methods, we describe the discrete light-cone quantization of QCD with quarks in the fundamental representation and also adjoint quarks, we compute the spectrum of baryons and their properties in the strong coupling limit, we discuss the issue of confinement versus screening behavior, we analyze QCD_2 using coset model and BRST techniques, and finally we digress and devote a chapter to generalized Yang–Mills theory on Riemann surfaces and their stringy nature.

In Part 3 we demonstrate the applications in four-dimensional gauge dynamics of conformal invariance, techniques of integrable models, of large N expansion and of topology. In particular we devote chapters to Skyrmions, magnetic monopoles and gauge theory instantons.

As we have mentioned above we had to take decisions about what topics related to non-perturbative field theory we should not include. We decided not to address string theories, supersymmetric field theories and the holographic string (gravity)/gauge duality. The main reason for this decision was that to cover each of these topics requires a book in itself, or even more than one book. In fact certain subjects that we do cover in the book, like conformal field theory, magnetic monopoles or instantons would require a full book to cover properly. What we have tried to achieve is to describe the basic ideas of each topic and to demonstrate its application. We have also not treated subjects like anomalies, lattice formulations, sigma models, chiral Lagrangians and other non-perturbative topics.

Some topics described in the book are “fully established topics”, in the sense that presumably the most important developments in those have been already achieved, for instance conformal field theory in two dimensions and bosonization in two dimensions. On the other hand some other topics of the book are under current intensive investigation and are certainly still not fully established. An example of the latter is integrability in four-dimensional gauge dynamics. The reason we have decided to include topics of the latter kind is that we wanted the book to be fairly up to date and useful to researchers investigating “modern” topics.

In the more basic issues we have made an effort to present the material in a pedagogical manner and to be self contained. For instance our discussion started from a free massless scalar field theory in two dimensions and gradually evolved
into general conformal field theories. In dealing with more advanced topics, like for instance instantons in four dimensions, the reader will need to consult with specialized references to obtain a more complete and wider picture of the topic.

Some of the content of the book, mainly in Part 2, is based on the research work of the authors, but most of the material is a review of the work of many researchers in the field.

The book is aimed for advanced Ph.D. students, post-docs and other newcomers to the arena of non-perturbative methods in field theory. The reader should definitely be equipped with a basic knowledge of field theory, group theory and algebra, differential equations, geometry and topology.

Throughout the book we refer to only a limited list of references. The number of scientific contributions to the topics discussed in this book is enormous and since we could not cover all of them we have referred to papers that initiated the various topics, and to review papers and books where a much more exhaustive list of references can be found.

We have made an attempt to keep the same notations throughout the book. However in certain instances we have changed notations during the course of the book, mainly to be in accordance with relevant literature. In these cases we specified explicitly the change in notation made.
Acknowledgements

We would like to thank Ori Sonnenschein for drawing the figures of the book.

We would like to thank O. Aharony, M. Karliner and S. Theisen for their remarks on the manuscript.

The work of Jacob Sonnenschein was supported in part by the Albert Einstein Minerva Center of The Weizmann Institute of Science.