This latest edition of *The Physiology of Flowering Plants* has been completely updated to cover the explosion of interest in plant biology. A whole-plant approach has been used to produce an integrated view of plant function, covering both the fundamentals of whole plant physiology and the latest developments in molecular biology. New developments in molecular techniques are explained within practical applications such as genetically modified plants. The book further examines:

- photosynthesis, respiration, plant growth and development;
- nutrition, water relations, photomorphogenesis and stress physiology;
- function, with particular attention to adaptations to different habitats.

Each chapter is fully referenced with suggestions for complementary reading including references to original research papers.

The Physiology of Flowering Plants is valuable to both undergraduate and postgraduate students studying plant biology.

Helgi Ópik was Senior Lecturer in the School of Biological Sciences at the University of Wales, Swansea until her retirement. Throughout her career she has taught plant physiology at all undergraduate levels, and since retiring has lectured in plant physiology for adult education. Her research interests have included plant respiration and ultrastructure, always aiming at integration of structure and physiological function.

Stephen Rolfe was awarded a European Molecular Biology Fellowship and undertook postdoctoral research on the phytochrome regulation of gene expression at the University of California, Los Angeles. He took up a post at the Department of Animal and Plant Sciences, University of Sheffield in 1991. His research interests include the study of photosynthesis and primary plant metabolism, with a special interest in non-invasive imaging techniques.
The Physiology of Flowering Plants

Fourth Edition

Helgi Öpik
Formerly Senior Lecturer,
School of Biological Sciences,
University of Wales,
Swansea

Stephen A. Rolfe
Senior Lecturer,
Department of Animal and Plant Sciences,
University of Sheffield

Academic Consultant Editor

Arthur J. Willis
Emeritus Professor,
University of Sheffield
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introduction</td>
</tr>
</tbody>
</table>
1.1 Appreciating plants | 1 |
1.2 What kind of plant physiology? | 2 |
1.3 Molecular biology and plant physiology: the integration of disciplines | 3 |
1.4 Outline of the text | 5 |

Part I Nutrition and transport

| Chapter 2 | Flow of energy and carbon through the plant: photosynthesis and respiration | 9 |
2.1 Introduction | 9 |
2.2 Energy flow and carbon turnover in the biosphere | 9 |
2.3 Photosynthesis: light absorption and utilization | 12 |
2.4 The fixation of carbon dioxide | 18 |
2.5 Limiting factors for photosynthesis | 30 |
2.6 The efficiency of energy conversion in photosynthesis | 32 |
2.7 Photosynthesis and the increase in atmospheric carbon dioxide | 36 |
2.8 Respiration: the oxidative breakdown of organic compounds | 38 |
2.9 Terminal oxidation and oxidative phosphorylation | 46 |
2.10 Anaerobic respiration | 49 |
2.11 Respiration and plant activity | 53 |

| Chapter 3 | Water relations | 60 |
3.1 Introduction | 60 |
3.2 Water movement and energy: the concept of water potential | 61 |
3.3 Water potentials of plant cells and tissues | 61 |
3.4 Water relations of whole plants and organs | 68 |
3.5 The transport of solutes in the xylem | 85 |
3.6 Water uptake and loss: control by environmental and plant factors | 86 |
3.7 Water conservation: xerophytes and xeromorphic characters | 95 |

| Chapter 4 | Mineral nutrition | 100 |
4.1 Introduction | 100 |
4.2 Essential elements | 100 |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Ion uptake and transport in the plant</td>
<td>106</td>
</tr>
<tr>
<td>4.4</td>
<td>Nitrogen assimilation, fixation and cycling</td>
<td>122</td>
</tr>
<tr>
<td>4.5</td>
<td>Problems with mineral elements: deficiency and toxicity</td>
<td>128</td>
</tr>
<tr>
<td>5.</td>
<td>Translocation of organic compounds</td>
<td>133</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>5.2</td>
<td>Phloem as the channel for organic translocation</td>
<td>133</td>
</tr>
<tr>
<td>5.3</td>
<td>The rate and direction of translocation</td>
<td>139</td>
</tr>
<tr>
<td>5.4</td>
<td>Phloem loading and unloading</td>
<td>142</td>
</tr>
<tr>
<td>5.5</td>
<td>Partitioning of translocate between sinks: integration at the whole-plant level</td>
<td>146</td>
</tr>
<tr>
<td>5.6</td>
<td>The mechanism of phloem translocation</td>
<td>148</td>
</tr>
<tr>
<td>Part II</td>
<td>Growth and development</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Growth as a quantitative process</td>
<td>161</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>161</td>
</tr>
<tr>
<td>6.2</td>
<td>The measurement of plant growth</td>
<td>162</td>
</tr>
<tr>
<td>6.3</td>
<td>Growth, development and differentiation</td>
<td>163</td>
</tr>
<tr>
<td>6.4</td>
<td>Localization of growth in space and time</td>
<td>164</td>
</tr>
<tr>
<td>6.5</td>
<td>Conditions necessary for growth</td>
<td>165</td>
</tr>
<tr>
<td>6.6</td>
<td>Growth rates</td>
<td>167</td>
</tr>
<tr>
<td>7.</td>
<td>Plant growth hormones</td>
<td>177</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>177</td>
</tr>
<tr>
<td>7.2</td>
<td>Plant growth hormones</td>
<td>178</td>
</tr>
<tr>
<td>7.3</td>
<td>Detection and quantification of hormones in plants</td>
<td>191</td>
</tr>
<tr>
<td>7.4</td>
<td>How do plant hormones cause responses?</td>
<td>194</td>
</tr>
<tr>
<td>8.</td>
<td>Cell growth and differentiation</td>
<td>205</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>205</td>
</tr>
<tr>
<td>8.2</td>
<td>Meristems and cell division</td>
<td>205</td>
</tr>
<tr>
<td>8.3</td>
<td>Mitochondrial and plastid division</td>
<td>211</td>
</tr>
<tr>
<td>8.4</td>
<td>Cell expansion: mechanism and control</td>
<td>213</td>
</tr>
<tr>
<td>8.5</td>
<td>Cell differentiation</td>
<td>218</td>
</tr>
<tr>
<td>9.</td>
<td>Vegetative development</td>
<td>221</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>221</td>
</tr>
<tr>
<td>9.2</td>
<td>The structure and activity of the shoot apical meristem</td>
<td>221</td>
</tr>
<tr>
<td>9.3</td>
<td>Organ formation</td>
<td>225</td>
</tr>
<tr>
<td>9.4</td>
<td>Secondary growth</td>
<td>227</td>
</tr>
<tr>
<td>9.5</td>
<td>Development of the leaf</td>
<td>228</td>
</tr>
<tr>
<td>9.6</td>
<td>The structure and activity of the root apical meristem</td>
<td>239</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Naming genes, proteins and mutations</td>
<td>373</td>
</tr>
<tr>
<td>A.2 Units of measurement</td>
<td>373</td>
</tr>
<tr>
<td>A.3 Prefixes for units</td>
<td>375</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>376</td>
</tr>
</tbody>
</table>
The history of this book dates back to the late 1960s, when the publishers Edward Arnold launched a series of student textbooks as the Contemporary Biology series, designed to provide up-to-date texts at elementary university and final-year school level. One of the first authors who was asked to contribute, on the topic of flowering plant physiology, was Professor H. E. Street, then Professor of Botany at the University of Wales, Swansea. He asked one of us (H.O.) to collaborate, and the first edition was duly published by Edward Arnold in 1970 under the authorship of H. E. Street and Helgi Opik, and entitled *The Physiology of Flowering Plants: Their Growth and Development*. The emphasis of the text was on the ‘whole plant’ aspects of physiology. The second edition followed in 1976 and the third in 1984, although Professor Street sadly deceased in 1977.

While the second and third editions were still very much revisions of the original text, the longer time interval since the last edition, and the rapid pace at which biological knowledge has grown in the last few decades, have now necessitated a very thorough rewriting of large sections of the book, and the task has been quite challenging in the face of an accumulation of facts that on occasion has seemed quite overwhelming. It is not possible now to interpret many aspects of plant physiology without reference to molecular biology, even when one is basically interested in functioning at the organismal level. This applies particularly to the developmental aspects of physiology. Some reorganization of the text and shift of emphasis has accordingly been necessitated, though we have tried to retain the overall spirit of the original book.

One thing has remained unchanged during the preparation of this book from the first edition to the fourth: the unfailing encouragement and help from our editor, Professor A. J. Willis. Without him, the present text would not have been written. We are also grateful for the support of Dr Ward Cooper, Commissioning Editor, and Dr Alan Crowden, Editorial Director, of Cambridge University Press. Thanks are due for reading, and advising on, parts of the manuscript, to Professor Richard C. Leegood, Professor David Read and Dr Julie Gray of the University of Sheffield.

H.O. would like to acknowledge the generosity of Professor Ray Waters, Head of the School of Biological Sciences at the University of Wales, Swansea, for use of departmental facilities in preparing illustrations. H.O. also would like to thank Ken Jones of the School of Biological Sciences, Swansea, for printing figures; my nephew Kevin Miller and my niece, Heather Nagey, for help with word processing; and Professor Kevin Flynn and Dr Charles Hipkin of the University of Wales, Swansea, for helpful discussions.
We are grateful to all the people who have permitted us to reproduce their published data, and have provided material and helpful advice for figures; particular thanks are due to Professor Jane Sprent and Dr Euan James of the University of Dundee for supplying the original micrograph of bacteroids (Fig. 4.7).