
Introduction

This book is an attempt to cover most of the results on reducibility of poly-
nomials over fairly large classes of fields; results valid only over finite fields,
local fields or the rational field have not been included. On the other hand,
included are many topics of interest to the author that are not directly related
to reducibility, e.g. Ritt’s theory of composition of polynomials.

Here is a brief summary of the six chapters.
Chapter 1 (Arbitrary polynomials over an arbitrary field) begins with

Lüroth’s theorem (Sections 1 and 2). This theorem is nowadays usually pre-
sented with a short non-constructive proof, due to Steinitz. We give a construc-
tive proof and present the consequences Lüroth’s theorem has for subfields of
transcendence degree 1 of fields of rational functions in several variables. The
much more difficult problem of the minimal number of generators for subfields
of transcendence degree greater than 1 belongs properly to algebraic geometry
and here only references are given.

The next topic to be considered (Sections 3 and 4) originated with Ritt.
Ritt 1922 gave a complete analysis of the behaviour of polynomials in one
variable over C under composition. He called a polynomial prime if it is not
the composition of two polynomials of lower degree and proved the two main
results:

(i) In every representation of a polynomial as the composition of prime poly-
nomials the number of factors is the same and their degrees coincide up to
a permutation.

(ii) If A, H and B, G are polynomials of relatively prime degrees m and n,
respectively, and

A(G) = B(H), (1)

then A, B, G, H can be given explicitly.
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2 Introduction

Ritt showed also how every representation of a polynomial as the composi-
tion of prime polynomials can be obtained from a given one by solving several
equations of the form (1), where A and B are prime.

We present an extension of Ritt’s result to polynomials over an arbitrary
field, for (ii) obtained only recently by Zannier 1993. Ritt’s term ‘prime’ is
replaced by ‘indecomposable’.

Indecomposability plays an essential role in the next topic: reducibility of
polynomials of the form ( f (x) − f (y))/(x − y) (Section 5). A necessary and
sufficient condition for reducibility over fields of characteristic 0 was proved
by Fried 1970. We give a proof of Fried’s theorem published recently by Turn-
wald 1995 and summarize the more recent progress on this topic and the state
of knowledge on reducibility of f (x) − g(y), where g, h are polynomials.
Section 6 contains results of Kronecker on factorization of polynomials. They
include properties of the Kronecker substitution, a theorem of Kronecker once
called fundamental and now nearly forgotten, that will be used later, and the
theorem of Kronecker and A. Kneser. The latter describes a connection be-
tween reducibility of a polynomial f ∈ k[x] over k(η) and that of a polynomial
g ∈ k[x] over k(ξ), where f (ξ) = g(η) = 0. Section 7 takes again the study of
reducibility of polynomials with separated variables. H. Davenport and the au-
thor proved in 1963 that a polynomial of the form F(x, y) + G(z) is reducible
over a field k of characteristic 0 if and only if F = H(A(x, y)), A, H ∈ k[t]
and H(t) + G(z) is reducible over k. Section 7 contains a natural general-
ization of this result and a discussion of the related results of Tverberg and
Geyer. After some auxiliary results have been established in Section 8, a con-
nection between irreducibility of a polynomial and of its substitution value af-
ter a specialization of some of the variables is treated in Section 9. This topic,
connected with the names of Bertini and Hilbert, will be considered again in
Chapter 3, Section 3 and Chapter 4, Section 4. The last Section 10 deals with
the properties of the Newton polytope of a polynomial in many variables, a
natural generalization of the Newton polygon.

Chapter 2 (Lacunary polynomials over an arbitrary field) begins with the-
orems of Capelli and M. Kneser. Capelli 1898 gave a simple necessary and
sufficient condition for reducibility of a binomial xn − a over a subfield of
C. The case of positive characteristic was settled by Rédei 1967. The the-
orem can also be viewed as a necessary and sufficient condition for an ele-
ment of a field k to satisfy the equality [k( n

√
a) : k] = n. In this aspect

the theorem is open to generalization, specifically, one can study the degree
[k( n1

√
a1, n2

√
a2, . . . , nl

√
al) : k]. An all encompassing result in this direction

for separable extensions has been found by M. Kneser 1975. It is reproduced
in Section 1 together with a more immediate extension of Capelli’s theorem.
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Introduction 3

It is an almost immediate consequence of Capelli’s theorem that for a �= 0
the polynomial xm + yn + a is irreducible over every field of characteristic 0
containing a. This observation is generalized in Section 2 to an easily applica-
ble irreducibility criterion for polynomials in many variables.

Following the work of Ritt 1927, Gourin 1933 proved that for a polyno-
mial F(x1, . . . , xs) with more than two terms, irreducible over C, and for
arbitrary positive integers t1, . . . , ts , the factorization of F(xt1

1 , . . . , xts
s ) into

irreducible factors can be derived from the factorization of F(xt1
1 , . . . , xts

s ),
where 〈t1, . . . , ts〉 belongs to a finite set of integral vectors depending only on
F . Gourin’s proof applies with small modifications to polynomials over an
arbitrary algebraically closed field and to integers t1, . . . , ts non-divisible by
the characteristic of the field. An extension of the theorem to polynomials over
fields no longer algebraically closed is given in Section 3. The only polynomi-
als to which this extension does not apply apart from cxi are of the form

F0

(
s∏

i=1

xδi
i

)
s∏

i=1

x−d min(0,δi )
i , (2)

where F0(x) is a polynomial of degree d and δ1, . . . , δs are integers, possibly
negative.

The long Section 4 deals with reducibility of trinomials over any rational
function field k(y). A necessary and sufficient condition for reducibility is
given for any trinomial xn + Axm + B (n > m > 0) such that A−n Bn−m �∈ k
and nm(n − m) is not divisible by the characteristic of k. The cases A ∈ k and
B ∈ k are given special attention. These results are used in Section 5 to charac-
terize reducible quadrinomials depending essentially on at least two variables
and such that the exponent vectors are all different modulo the characteristic
of the ground field.

Section 6 presents a lower estimate for the number of non-zero coefficients
of f l in terms of l and of the number of non-zero coefficients of a polynomial
f in one variable. An upper estimate is also given, valid in infinitely many
essentially different cases.

Chapter 3 (Polynomials over an algebraically closed field) begins with the
result of E. Noether, according to which a form of degree d in n variables is
reducible over an algebraically closed field if and only if its coefficients sat-
isfy a system of algebraic equations depending only on d and n (Section 1).
Section 2 presents a theorem of Ruppert in which for n = 3 and characteris-
tic 0 a system of equations with the above property is explicitly constructed.
Section 3 is devoted to Bertini’s theorem on reducibility. This theorem in its
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4 Introduction

original formulation characterizes forms

f0(x) + λ1 f1(x) + · · · + λn fn(x)

defined over C that become reducible over C for every choice of parameters
λ1, . . . , λn . We present an extension of this result to all algebraically closed
fields with a proof due to Krull 1937.

Section 4 differs definitely from the former three in that it concerns ex-
clusively polynomials over C. For such polynomials, in any number of
variables, Mahler has introduced a measure M , that is multiplicative, i.e.
M( f g) = M( f )M(g). This measure has many interesting properties itself
and also helps to describe the behaviour at the multiplication of other mea-
sures, e.g. of the length, defined for a polynomial as the sum of the absolute
values of its coefficients. Section 4 presents several theorems on the Mahler
measure of polynomials over C, some of them quite recent.

Chapter 4 (Polynomials over a finitely generated field) begins with an exten-
sion of Gourin’s theorem (discussed in Chapter 2, Section 3) to polynomials
of the form (2), which is possible for every finitely generated ground field K,
provided the polynomial F0 is irreducible over K and has neither 0 nor roots of
unity as zeros (Section 1). Section 2 presents the best known lower bound in
terms of the degree for the Mahler measure of an irreducible non-cyclotomic
polynomial with integer coefficients. This bound is used in Section 3 to the
study of the following problem.

Suppose that P, Q are coprime polynomials over a field K. Then there
exists a number c(P, Q) with the following property. If P(ξn1 , . . . , ξnk ) =
Q(ξn1 , . . . , ξnk ) = 0 for some integers n1, . . . , nk and some ξ �= 0 in the al-
gebraic closure of K then either ξq = 1 for a positive integer q or there exist
integers γ1, . . . , γk such that

k∑
i=1

γi ni = 0 and 0 < max
1≤i≤k

|γi | ≤ c(P, Q).

This is established in Section 3 only for k ≤ 3, K arbitrary and for k arbi-
trary, K of positive characteristic. The result is placed in Chapter 4 rather than
in Chapter 2 since the decisive role is played by the field generated over the
prime field of K by the coefficients of P and Q.

For k > 3, K of zero characteristic, the assertion is established in the ap-
pendix written by Umberto Zannier, entitled Proof of Conjecture 1. Indeed, in
the first version of Section 3 the assertion in full generality was only conjec-
tured and the name Conjecture has been retained.

Section 4 is devoted to Hilbert’s irreducibility theorem. The simplest case
of this theorem asserts that if a polynomial F(x, t) is irreducible over Q as a
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Introduction 5

polynomial in two variables then F(x, t∗) is irreducible over Q for infinitely
many integers t∗. Section 4 presents a much more general form of the theorem,
in which in particular Q is replaced by an arbitrary finitely generated field. In
order to prove the theorem in such generality we use a method of Eichler based
on some deep properties of equations over finite fields, rather than the more
elementary approach sufficient to establish the theorem for number fields.

Hilbert’s theorem in its simplest form stated above is closely related to
the following property of diophantine equations. If an algebraic equation
F(x, t) = 0 is soluble in rational or integer x for a sufficiently large set of
integers t , then it is soluble for x in Q(t) or Q[t], respectively. A question
suggests itself, whether a similar statement holds for equations with a greater
number of unknowns and parameters and with Q replaced by a number field
K. The bulk (Sections 1–8) of Chapter 5 (Polynomials over a number field)
is devoted to the study of this question. Section 1 constitutes an introduction
to Sections 2–8, therefore here we only explain the fact that many theorems
proved in this section concern polynomials over C rather than over a number
field. Specifically, in every such case the main difficulty lies in proving the the-
orem for polynomials over K and then the general statement follows by linear
algebra.

The result of Section 9 is tantamount to the following theorem. Let F ∈
K[x1, . . . , xs], where K is a number field, be irreducible over K, not a scalar
multiple of xi and not of the form (2), where F0 has roots of unity as zeros.
Then there exists a number c0(K, F) with the following property. If for some
integers n1, . . . , ns the only zeros of F(xn1 , . . . , xns ) are 0 and roots of unity,
then there exist integers γ1, . . . , γk such that

s∑
i=1

γi ni = 0 and 0 < max |γi | ≤ c0(K, F).

The title of the last chapter ‘Polynomials over a Kroneckerian field’ itself
requires an explanation. By a Kroneckerian field (a term due to K. Győry) we
mean a totally real number field or a totally complex quadratic extension of
such a field. Among polynomials defined over a Kroneckerian field and prime
to the product of the variables, exceptional in several respects are polynomials
called self-inversive, i.e. polynomials F that satisfy an identity

F(x−1
1 , . . . , x−1

k )

k∏
i=1

xdi
i = cF(x1, . . . , xk),

where di is the degree of F with respect to xi , c ∈ C and the bar denotes
complex conjugation.
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6 Introduction

Section 1 presents estimates for the Mahler measure of non-self-inversive
polynomials. They are far better than the estimates true in general.

Section 2 shows, for arbitrary integers n1, . . . , nk , how all non-self-inversive
factors of a polynomial F(xn1 , . . . , xnk ) irreducible over a Kroneckerian field
K can be obtained together with their multiplicities from the factorization of
finitely many polynomials

F

(
r∏

i=1

yνi1
i , . . . ,

r∏
i=1

yνik
i

)
, where max |νi j | ≤ c(K, F).

For k = 1 this is a consequence of the result of Chapter 4, Section 1. For
k > 1 there is an analogy between the two results, but the above result lies
much deeper, concerning reducibility of polynomials in one variable. Probably
a similar result is true for all factors of F(xn1 , . . . , xnk ) irreducible over K that
have neither 0 nor roots of unity as zeros, however this is far from being proved
and Section 3 presents only some steps in this direction. As a consequence one
obtains for a given algebraic number a �= 0, ±1 and a given polynomial f (x)

with algebraic coefficients the existence of a polynomial

xn + axm + f (x) irreducible over K(a, f ),

where f is the coefficient vector of f . Unfortunately, there is a very restrictive
condition that the field K(a, f ) should be linearly disjoint with all cyclotomic
fields.

Section 4, the last one, gives an exposition of the work of Győry on re-
ducibility over Kroneckerian fields of composite polynomials F(G(x)).

The choice of material has been dictated by the personal taste of the author;
out of 82 theorems, 37 belong to him and out of these 23 (Theorems 23, 24,
52, 54, 56, 58–66, 72, 74–81) have not been published before with the same
degree of generality. Also Theorems 17, 29, 43, 50, 51, 55, 57, 67–71 are tech-
nically new, although their crucial special cases have been published before. In
particular, Theorem 43 is taken from an unpublished and now lost manuscript
of the late J. Wójcik.

Theorems proved in the sequel, conjectures and definitions are numbered
successively for the whole book except the appendices; lemmas, conventions,
remarks, examples and formulae are numbered separately for each section.

The book is not self-contained, the reader is often referred to the following
five books:

E. Hecke, Lectures on the theory of algebraic numbers,
S. Lang, Algebra,
H. Mann, Introduction to algebraic number theory,
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Introduction 7

W. Rudin, Principles of mathematical analysis,
W. Rudin, Real and complex analysis,

abbreviated as [H], [L], [M], [P], [R]. The definitions and the results needed to
follow the exposition, not found in the above books, are collected in 10 appen-
dices: A, B, C, D, E, F, G, I, J, K. The reference Theorem E5, say, means The-
orem 5 of Appendix E, the reference Theorem [L] 10.1 means Theorem 10.1
of Lang’s book.

At the end of the book there are an index of theorems and an index of defi-
nitions and conjectures covering the main part of the book, not the appendices.
The index of terms covers the whole book. There is no index of names, but in
the bibliography for each reference, except ones listed as standard, there are
indicated pages, where this reference is cited.
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Notation

The letters k and K are reserved for fields, in Chapters 4–6 the letter K denotes
a finitely generated field.

char k is the characteristic of k,
k∗ is the multiplicative group of the field k,
k is the algebraic closure of k,ksep the maximal subfield of k separable over
k.
OK is the ring of integers of a number field K, disc K is its discriminant,
O∗

K the group of units. For an extension K/k, tr.deg. K/k is the transcen-
dence degree of K over k. For a finite extension K/k the symbols NK/k

and TrK/k denote the norm and the trace, respectively, from K to k or from
K(x1, . . . , xn) to k(x1, . . . , xn), where x1, . . . , xn are variables.
Q, R, C are the fields of rational, real and complex numbers, respectively,
Fq is the finite field of q elements,
Z is the ring of rational integers,
N, N0, R+ are the sets of positive integers, non-negative integers and non-
negative real numbers, respectively,
Mk,l(S) is the set of all matrices with k rows and l columns and with entries
from the set S, t M, and rank M are the transpose and the rank of a matrix
M , a M and det M the adjoint and the determinant of a square matrix M ,
respectively. Vectors are treated as matrices with one row. For a set S of
vectors rank S is the number of linearly independent vectors in S.
GL(Z, n) is the multiplicative group formed by all elements of Mn,n(Z)

with determinant ±1,
In is the identity matrix of order n.

Bold face letters denote fields or vectors; which of the two should be clear
from the context; in addition C(F) and M(F) have a special meaning explained
in Chapter 1, Section 10 and bold face letters are freely used in Chapter 4,

8
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Notation 9

Section 3. If a is a vector, ai is its i th coordinate; for two vectors a and b, ab
and a ∧ b denote the inner and the external product, respectively. German let-
ters, except M with subscripts, denote prime divisors and prime ideals, script
letters usually denote groups.

If distinct bold face letters occur as arguments of a polynomial, it is assumed
that the coordinates of the relevant vectors are independent variables. For a
polynomial F(x1, x2, . . ., xn) over an integral domain D or a field k:

∂xi F is the maximum degree of F with respect to x , where x runs over all
variables occurring in xi , if n = 1, ∂x1 F =: ∂ F , however ∂ F

∂x is the partial
derivative of F with respect to x ;

deg xi
F is the degree of F viewed as a polynomial in xi , if n = 1,

deg x1
F =: deg F .

If f = F
G , where F, G are coprime polynomials, then deg f := max{deg F,

deg G}.
If f, g ∈ k(x), f ∼=

k
g means that f g−1 ∈ k \ {0} ( f, g are scalar multiples of

each other) and f �∼=
k

g means that the above relation does not hold. Further

F(x)
can=
D

const
s∏

σ=1

Fσ (x)eσ

means that

F(x)

s∏
σ=1

Fσ (x)−eσ ∈ D \ {0},

the polynomials Fσ ∈ D[x] (1 ≤ σ ≤ s) are irreducible over the quotient field
of D and pairwise relatively prime, eσ ∈ N.

The leading coefficient of F is the coefficient of the first term of F in the
antilexicographic order†. A polynomial with leading coefficient 1 is called
monic, the greatest common divisor of non-zero polynomials is assumed to be
monic,

discx F is the discriminant of F with respect to the variable x ,
cont F is the content of F defined as the greatest common divisor of the

coefficients of F , F is primitive if cont F = 1. For rational functions f and g
in one variable we set

f ◦ g = f (g(x)).

For a rational function of the form

f (x1, x2, . . . , xn) = xα1
1 xα2

2 . . . xαn
n F(x1, x2, . . . , xn),

† i.e. such a term a
∏n

i=1 x
αi
i (a �= 0) that for every other term b

∏n
i=1 x

βi
i (b �= 0) there is a

k ≥ 0 satisfying αi = βi (i ≤ k), αk+1 > βk+1.
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10 Notation

where F is a polynomial prime to x1x2 . . . xn we set

J f (x1, x2, . . . , xn) = F(x1, x2, . . . , xn)

and consider the leading coefficient and the content of F as those of f . A ho-
mogeneous polynomial is called a form. A form F ∈ k[x, y] is called singular
if it has a multiple factor over k, and non-singular otherwise.

res

(
H1, . . . , Hs

x1, . . . , xs

)
is the resultant of forms H1, . . . , Hs with respect to vari-

ables x1, . . . , xs .
Braces denote sets, card S is the cardinality of S, Sn is usually the Cartesian

nth power of S, but occasionally, when k is a field, kn = {xn : x ∈ k} and
similarly for groups or rings. For sets A and B : A \ B = {x ∈ A : x �∈ B},
A − B = {a − b : a ∈ A, b ∈ B}.

Parenthesis is used as above to denote matrices, but (abc . . .) denotes the
cycle a → b → c . . . → a;

(a, b, c, . . .) denotes the greatest common divisor of a, b, c, . . ., but occa-
sionally (a, b) = {x ∈ R : a < x < b};

k(S) denotes the least field containing the field k and the set S,
k((x)) is the field of Laurent series over k of the variable vector x.
Brackets [a, b, c, . . .] denote the least common multiple of a, b, c, . . ., but

occasionally, [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b) = {x ∈ R : a ≤ x < b};
[L : K] or [H : G] denotes the degree of extension L/K or the index of the

group G in H, depending on the context;
D[S] denotes the least ring containing the ring D and the set S,
D[[x]] is the ring of power series over D of the variable vector x.
For an x ∈ R : �x� = max{n ∈ Z : n ≤ x}, �x� = min{n ∈ Z : n ≥ x}.
Brackets 〈 〉 denote vectors, G〈S〉 denotes the least group containing the

group G and the set S, also if S is a set of permutations, 〈S〉 denotes the least
group of permutations containing S.

| · | denotes an absolute value or the Euclidean norm (except in Chapter 1,
Section 9), but |G|, where G is a group, denotes the order of G.

For z ∈ C, z is the complex conjugate of z, Re z and Im z are the real and
the imaginary part of z, respectively. For A = (ai j ) ∈ Mk,l(C) : A = (ai j ),
unless stated to the contrary. For P ∈ C[x], P is the polynomial with the
coefficients equal to the complex conjugates of the corresponding coefficients
of P .

For P ∈ k[x], P ′ = d P

dx
.

ζn is a primitive root of unity of order n,
µ is the Möbius function,
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